These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 10943274)

  • 41. A fuzzy approach for contrast enhancement of mammography breast images.
    Sahba F; Venetsanopoulos A
    Adv Exp Med Biol; 2010; 680():619-26. PubMed ID: 20865547
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mammographic features of breast cancers at single reading with computer-aided detection and at double reading in a large multicenter prospective trial of computer-aided detection: CADET II.
    James JJ; Gilbert FJ; Wallis MG; Gillan MG; Astley SM; Boggis CR; Agbaje OF; Brentnall AR; Duffy SW
    Radiology; 2010 Aug; 256(2):379-86. PubMed ID: 20656831
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Computer-aided diagnosis of contrast-enhanced spectral mammography: A feasibility study.
    Patel BK; Ranjbar S; Wu T; Pockaj BA; Li J; Zhang N; Lobbes M; Zhang B; Mitchell JR
    Eur J Radiol; 2018 Jan; 98():207-213. PubMed ID: 29279165
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Computer-aided breast cancer detection using mammograms: a review.
    Ganesan K; Acharya UR; Chua CK; Min LC; Abraham KT; Ng KH
    IEEE Rev Biomed Eng; 2013; 6():77-98. PubMed ID: 23247864
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Overview on subjective similarity of images for content-based medical image retrieval.
    Muramatsu C
    Radiol Phys Technol; 2018 Jun; 11(2):109-124. PubMed ID: 29740749
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Reading screening mammograms with the help of neural networks].
    Karssemeijer N; Veldkamp WJ; te Brake GM; Hendriks JH
    Ned Tijdschr Geneeskd; 1999 Nov; 143(45):2232-6. PubMed ID: 10578420
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Studies on automated detection methods and related techniques for mammographic masses].
    Matsubara T
    Nihon Hoshasen Gijutsu Gakkai Zasshi; 2002 Oct; 58(10):1411-3. PubMed ID: 12555755
    [No Abstract]   [Full Text] [Related]  

  • 48. Digital mammography: novel applications.
    Rafferty EA
    Radiol Clin North Am; 2007 Sep; 45(5):831-43, vii. PubMed ID: 17888772
    [TBL] [Abstract][Full Text] [Related]  

  • 49. ATMTN: a telemammography network architecture.
    Sheybani EO; Sankar R
    IEEE Trans Biomed Eng; 2002 Dec; 49(12):1438-43. PubMed ID: 12542239
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Lung Lesion Detection in CT Scan Images Using the Fuzzy Local Information Cluster Means (FLICM) Automatic Segmentation Algorithm and Back Propagation Network Classification.
    Lavanya M; Kannan PM
    Asian Pac J Cancer Prev; 2017 Dec; 18(12):3395-3399. PubMed ID: 29286609
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The performance of computer-aided detection when analyzing prior mammograms of newly detected breast cancers with special focus on the time interval from initial imaging to detection.
    Malich A; Schmidt S; Fischer DR; Facius M; Kaiser WA
    Eur J Radiol; 2009 Mar; 69(3):574-8. PubMed ID: 18337045
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Multi-criterion mammographic risk analysis supported with multi-label fuzzy-rough feature selection.
    Qu Y; Yue G; Shang C; Yang L; Zwiggelaar R; Shen Q
    Artif Intell Med; 2019 Sep; 100():101722. PubMed ID: 31607343
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Can computer-aided detection be detrimental to mammographic interpretation?
    Philpotts LE
    Radiology; 2009 Oct; 253(1):17-22. PubMed ID: 19789251
    [No Abstract]   [Full Text] [Related]  

  • 54. Computer-aided characterization of mammographic masses: accuracy of mass segmentation and its effects on characterization.
    Sahiner B; Petrick N; Chan HP; Hadjiiski LM; Paramagul C; Helvie MA; Gurcan MN
    IEEE Trans Med Imaging; 2001 Dec; 20(12):1275-84. PubMed ID: 11811827
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A completely automated CAD system for mass detection in a large mammographic database.
    Bellotti R; De Carlo F; Tangaro S; Gargano G; Maggipinto G; Castellano M; Massafra R; Cascio D; Fauci F; Magro R; Raso G; Lauria A; Forni G; Bagnasco S; Cerello P; Zanon E; Cheran SC; Lopez Torres E; Bottigli U; Masala GL; Oliva P; Retico A; Fantacci ME; Cataldo R; De Mitri I; De Nunzio G
    Med Phys; 2006 Aug; 33(8):3066-75. PubMed ID: 16964885
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Computer-aided detection (CAD) of breast masses in mammography: combined detection and ensemble classification.
    Choi JY; Kim DH; Plataniotis KN; Ro YM
    Phys Med Biol; 2014 Jul; 59(14):3697-719. PubMed ID: 24923292
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Pectoral muscle segmentation: a review.
    Ganesan K; Acharya UR; Chua KC; Min LC; Abraham KT
    Comput Methods Programs Biomed; 2013 Apr; 110(1):48-57. PubMed ID: 23270962
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A computer-aided detection of the architectural distortion in digital mammograms using the fractal dimension measurements of BEMD.
    Zyout I; Togneri R
    Comput Med Imaging Graph; 2018 Dec; 70():173-184. PubMed ID: 29691123
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A method to test the reproducibility and to improve performance of computer-aided detection schemes for digitized mammograms.
    Zheng B; Gur D; Good WF; Hardesty LA
    Med Phys; 2004 Nov; 31(11):2964-72. PubMed ID: 15587648
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Double reading.
    Kopans DB
    Radiol Clin North Am; 2000 Jul; 38(4):719-24. PubMed ID: 10943273
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.