These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 10943558)

  • 21. The ancestral role of the phosphoenolpyruvate-carbohydrate phosphotransferase system (PTS) as exposed by comparative genomics.
    Cases I; Velázquez F; de Lorenzo V
    Res Microbiol; 2007; 158(8-9):666-70. PubMed ID: 17913467
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Regulatory links between carbon and nitrogen metabolism.
    Commichau FM; Forchhammer K; Stülke J
    Curr Opin Microbiol; 2006 Apr; 9(2):167-72. PubMed ID: 16458044
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Isolation and genetic study of Erwinia mutants devoid of common components of the phosphoenolpyruvate-dependent phosphotransferase system].
    Datsenko KA; Evtushenkov AN; Bol'shakova TN
    Genetika; 2002 May; 38(5):622-8. PubMed ID: 12068545
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Regulation of PTS gene expression by the homologous transcriptional regulators, Mlc and NagC, in Escherichia coli (or how two similar repressors can behave differently).
    Plumbridge J
    J Mol Microbiol Biotechnol; 2001 Jul; 3(3):371-80. PubMed ID: 11361067
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparative genomic analyses of the bacterial phosphotransferase system.
    Barabote RD; Saier MH
    Microbiol Mol Biol Rev; 2005 Dec; 69(4):608-34. PubMed ID: 16339738
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Unraveling the evolutionary history of the phosphoryl-transfer chain of the phosphoenolpyruvate:phosphotransferase system through phylogenetic analyses and genome context.
    Comas I; González-Candelas F; Zúñiga M
    BMC Evol Biol; 2008 May; 8():147. PubMed ID: 18485189
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evidence for a phosphoenolpyruvate dependent sugar-phosphotransferase system in the mollicute Acholeplasma florum.
    Navas-Castillo J; Laigret F; Hocquellet A; Chang CJ; Bove JM
    Biochimie; 1993; 75(8):675-9. PubMed ID: 8286440
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Streptomyces olivaceoviridis possesses a phosphotransferase system that mediates specific, phosphoenolpyruvate-dependent uptake of N-acetylglucosamine.
    Wang F; Xiao X; Saito A; Schrempf H
    Mol Genet Genomics; 2002 Nov; 268(3):344-51. PubMed ID: 12436256
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of the individual glucose uptake systems of Lactococcus lactis: mannose-PTS, cellobiose-PTS and the novel GlcU permease.
    Castro R; Neves AR; Fonseca LL; Pool WA; Kok J; Kuipers OP; Santos H
    Mol Microbiol; 2009 Feb; 71(3):795-806. PubMed ID: 19054326
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Corynebacterium glutamicum: a dissection of the PTS.
    Parche S; Burkovski A; Sprenger GA; Weil B; Krämer R; Titgemeyer F
    J Mol Microbiol Biotechnol; 2001 Jul; 3(3):423-8. PubMed ID: 11361073
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Novel phosphotransferase system genes revealed by bacterial genome analysis--a gene cluster encoding a unique Enzyme I and the proteins of a fructose-like permease system.
    Reizer J; Reizer A; Saier MH
    Microbiology (Reading); 1995 Apr; 141 ( Pt 4)():961-71. PubMed ID: 7773398
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Properties of mutants of bacteria belonging to the genus Erwinia devoid of common components of the phosphoenolpyruvate-dependent phosphotransferase system].
    Datsenko KA; Evtushenko AN; Sergeev KV; Dobrynina OIu; Bol'shakova TN
    Genetika; 2002 Jul; 38(7):904-10. PubMed ID: 12174582
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Routes for fructose utilization by Escherichia coli.
    Kornberg HL
    J Mol Microbiol Biotechnol; 2001 Jul; 3(3):355-9. PubMed ID: 11361065
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Bacterial Phosphotransferase System: New Frontiers 50 Years after Its Discovery.
    Saier MH
    J Mol Microbiol Biotechnol; 2015; 25(2-3):73-8. PubMed ID: 26159069
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Regulation of the pts operon in low G+C Gram-positive bacteria.
    Vadeboncoeur C; Frenette M; Lortie LA
    J Mol Microbiol Biotechnol; 2000 Oct; 2(4):483-90. PubMed ID: 11075921
    [TBL] [Abstract][Full Text] [Related]  

  • 36. PtsN in Pseudomonas aeruginosa Is Phosphorylated by Redundant Upstream Proteins and Impacts Virulence-Related Genes.
    Underhill SAM; Pan S; Erdmann M; Cabeen MT
    J Bacteriol; 2023 May; 205(5):e0045322. PubMed ID: 37074168
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular analysis of the glucose-specific phosphoenolpyruvate : sugar phosphotransferase system from Lactobacillus casei and its links with the control of sugar metabolism.
    Yebra MJ; Monedero V; Zúñiga M; Deutscher J; Pérez-Martínez G
    Microbiology (Reading); 2006 Jan; 152(Pt 1):95-104. PubMed ID: 16385119
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The phosphotransferase system of Corynebacterium glutamicum: features of sugar transport and carbon regulation.
    Moon MW; Park SY; Choi SK; Lee JK
    J Mol Microbiol Biotechnol; 2007; 12(1-2):43-50. PubMed ID: 17183210
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fractionation and characterization of the phosphoenolpyruvate: fructose 1-phosphotransferase system from Pseudomonas aeruginosa.
    Durham DR; Phibbs PV
    J Bacteriol; 1982 Feb; 149(2):534-41. PubMed ID: 6799490
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A novel-designed Escherichia coli for the production of various polyhydroxyalkanoates from inexpensive substrate mixture.
    Li R; Chen Q; Wang PG; Qi Q
    Appl Microbiol Biotechnol; 2007 Jul; 75(5):1103-9. PubMed ID: 17334755
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.