BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 10943711)

  • 1. Synaptic mechanisms of NMDA-mediated hyperpolarization in lateral amygdaloid projection neurons.
    Danober L; Heinbockel T; Driesang RB; Pape HC
    Neuroreport; 2000 Aug; 11(11):2501-6. PubMed ID: 10943711
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cerebellar input to magnocellular neurons in the red nucleus of the mouse: synaptic analysis in horizontal brain slices incorporating cerebello-rubral pathways.
    Jiang MC; Alheid GF; Nunzi MG; Houk JC;
    Neuroscience; 2002; 110(1):105-21. PubMed ID: 11882376
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GABAergic excitation in the basolateral amygdala.
    Woodruff AR; Monyer H; Sah P
    J Neurosci; 2006 Nov; 26(46):11881-7. PubMed ID: 17108161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NMDA or non-NMDA receptor antagonists attenuate increased Fos expression in spinal dorsal horn GABAergic neurons after intradermal injection of capsaicin in rats.
    Zou X; Lin Q; Willis WD
    Neuroscience; 2001; 106(1):171-82. PubMed ID: 11564427
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinct types of ionic modulation of GABA actions in pyramidal cells and interneurons during electrical induction of hippocampal seizure-like network activity.
    Fujiwara-Tsukamoto Y; Isomura Y; Imanishi M; Fukai T; Takada M
    Eur J Neurosci; 2007 May; 25(9):2713-25. PubMed ID: 17459104
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Putative cortical and thalamic inputs elicit convergent excitation in a population of GABAergic interneurons of the lateral amygdala.
    Szinyei C; Heinbockel T; Montagne J; Pape HC
    J Neurosci; 2000 Dec; 20(23):8909-15. PubMed ID: 11102501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. alpha7 nicotinic acetylcholine receptors on GABAergic interneurons evoke dendritic and somatic inhibition of hippocampal neurons.
    Buhler AV; Dunwiddie TV
    J Neurophysiol; 2002 Jan; 87(1):548-57. PubMed ID: 11784770
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Postnatal changes in somatic gamma-aminobutyric acid signalling in the rat hippocampus.
    Tyzio R; Minlebaev M; Rheims S; Ivanov A; Jorquera I; Holmes GL; Zilberter Y; Ben-Ari Y; Khazipov R
    Eur J Neurosci; 2008 May; 27(10):2515-28. PubMed ID: 18547241
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cholinergic modulation of nucleus accumbens medium spiny neurons.
    de Rover M; Lodder JC; Kits KS; Schoffelmeer AN; Brussaard AB
    Eur J Neurosci; 2002 Dec; 16(12):2279-90. PubMed ID: 12492422
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Serotonergic modulation of neurotransmission in the rat basolateral amygdala.
    Rainnie DG
    J Neurophysiol; 1999 Jul; 82(1):69-85. PubMed ID: 10400936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intrinsic GABA neurons inhibit proenkephalin gene expression in slice cultures of rat neostriatum.
    Mörl F; Gröschel M; Leemhuis J; Meyer DK
    Eur J Neurosci; 2002 Apr; 15(7):1115-24. PubMed ID: 11982623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The allosteric glycine site of the N-methyl-D-aspartate receptor modulates GABAergic-mediated synaptic events in neonatal rat CA3 hippocampal neurons.
    Gaiarsa JL; Corradetti R; Cherubini E; Ben-Ari Y
    Proc Natl Acad Sci U S A; 1990 Jan; 87(1):343-6. PubMed ID: 2153293
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kindling-induced long-lasting changes in synaptic transmission in the basolateral amygdala.
    Rainnie DG; Asprodini EK; Shinnick-Gallagher P
    J Neurophysiol; 1992 Feb; 67(2):443-54. PubMed ID: 1349037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuropharmacological mechanisms underlying rhythmical discharge in trigeminal interneurons during fictive mastication.
    Inoue T; Chandler SH; Goldberg LJ
    J Neurophysiol; 1994 Jun; 71(6):2061-73. PubMed ID: 7931502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Propagation of synchronous burst discharges from entorhinal cortex to morphologically and electrophysiologically identified neurons of rat lateral amygdala.
    Funahashi M; Matsuo R; Stewart M
    Brain Res; 2000 Nov; 884(1--2):104-15. PubMed ID: 11082492
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabotropic glutamate receptors in the main olfactory bulb drive granule cell-mediated inhibition.
    Heinbockel T; Laaris N; Ennis M
    J Neurophysiol; 2007 Jan; 97(1):858-70. PubMed ID: 17093122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-term depression in the basolateral amygdala of the mouse involves the activation of interneurons.
    Rammes G; Eder M; Dodt HU; Kochs E; Zieglgänsberger W
    Neuroscience; 2001; 107(1):85-97. PubMed ID: 11744249
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A specialized subclass of interneurons mediates dopaminergic facilitation of amygdala function.
    Marowsky A; Yanagawa Y; Obata K; Vogt KE
    Neuron; 2005 Dec; 48(6):1025-37. PubMed ID: 16364905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms and functional significance of a slow inhibitory potential in neurons of the lateral amygdala.
    Danober L; Pape HC
    Eur J Neurosci; 1998 Mar; 10(3):853-67. PubMed ID: 9753153
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spontaneously active GABAergic interneurons in the subfornical organ of rat slice preparations.
    Honda E; Xu S; Ono K; Ito K; Inenaga K
    Neurosci Lett; 2001 Jun; 306(1-2):45-8. PubMed ID: 11403954
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.