BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 10944444)

  • 1. The use of the substrate-heme complex approach in the design, synthesis, biochemical evaluation, and rationalization of the inhibitory activity of a range of azole compounds against cholesterol side chain cleavage enzyme.
    Ahmed S
    Biochem Biophys Res Commun; 2000 Aug; 275(1):75-6. PubMed ID: 10944444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pharmacology of aminoglutethimide: structure/activity relationships and receptor interactions.
    Nicholls PJ; Daly MJ; Smith HJ
    Breast Cancer Res Treat; 1986; 7 Suppl():S55-67. PubMed ID: 3755630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and biological evaluation of imidazole based compounds as cytochrome P-450 inhibitors.
    Ahmed S; Smith JH; Nicholls PJ; Whomsley R; Cariuk P
    Drug Des Discov; 1995 Aug; 13(1):27-41. PubMed ID: 8882899
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The use of the novel substrate-heme complex approach in the derivation of a representation of the active site of the enzyme cholesterol side chain cleavage.
    Ahmed S
    Biochem Biophys Res Commun; 2000 Aug; 274(3):821-4. PubMed ID: 10924360
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and biochemical evaluation of novel inhibitors of aromatase (AR) using an enhanced representation of the active site of AR derived from the consideration of the reaction mechanism.
    Ahmed S; Amanuel Y
    Biochem Biophys Res Commun; 2000 Jan; 267(1):356-61. PubMed ID: 10623624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel oxazolidinone based compounds as inhibitors of aromatase and the use of the substrate-heme complex approach in the rationalisation of these compounds.
    Ahmed S; Adat S; Murrells A; Owen CP
    Biochem Biophys Res Commun; 2002 Jun; 294(2):380-3. PubMed ID: 12051723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics and functional activity of cytochrome P450scc selectively labeled with fluorescein isothiocyanate.
    Lepesheva GI; Usanov SA
    Biochemistry (Mosc); 1997 Jun; 62(6):648-56. PubMed ID: 9324423
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computer-assisted design of selective imidazole inhibitors for cytochrome p450 enzymes.
    Verras A; Kuntz ID; Ortiz de Montellano PR
    J Med Chem; 2004 Jul; 47(14):3572-9. PubMed ID: 15214784
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of cholesterol side-chain cleavage. Part 5. Synthesis of 22-(p-chlorophenyl) cholesterol analogues.
    Bergstrom CP; Clarke R; Fitzloff JF; Lu MC
    Drug Des Deliv; 1991 Jul; 7(4):259-68. PubMed ID: 1930619
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and characterization of azole isoflavone inhibitors of aromatase.
    Hackett JC; Kim YW; Su B; Brueggemeier RW
    Bioorg Med Chem; 2005 Jun; 13(12):4063-70. PubMed ID: 15911319
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design, synthesis, and biological testing of potential heme-coordinating nitric oxide synthase inhibitors.
    Litzinger EA; Martásek P; Roman LJ; Silverman RB
    Bioorg Med Chem; 2006 May; 14(9):3185-98. PubMed ID: 16431112
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and aromatase-inhibitory activity of imidazolyl-1,3,5-triazine derivatives.
    Matsuno T; Kato M; Tsuchida Y; Takahashi M; Yaguchi S; Terada S
    Chem Pharm Bull (Tokyo); 1997 Feb; 45(2):291-6. PubMed ID: 9118443
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis, evaluation and QSAR studies of highly potent aromatase inhibitors of the piperidinedione type.
    Baston E; Klein CD; Grimminger W; Hebecker N; Hartmann RW
    Anticancer Drug Des; 2001 Feb; 16(1):37-47. PubMed ID: 11762643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular modelling study of the binding of inhibitors of aromatase to the cytochrome P-450 heme.
    Ahmed S; Davis PJ; Owen CP
    Drug Des Discov; 1996 Oct; 14(2):91-102. PubMed ID: 9010616
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Pyridyl-substituted tetralone derivatives: a new class of nonsteroidal aromatase inhibitors].
    Bayer H; Hartmann RW
    Arch Pharm (Weinheim); 1991 Oct; 324(10):815-20. PubMed ID: 1805713
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How do azoles inhibit cytochrome P450 enzymes? A density functional study.
    Balding PR; Porro CS; McLean KJ; Sutcliffe MJ; Maréchal JD; Munro AW; de Visser SP
    J Phys Chem A; 2008 Dec; 112(50):12911-8. PubMed ID: 18563875
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lead optimization of 4-imidazolylflavans: new promising aromatase inhibitors.
    Yahiaoui S; Pouget C; Buxeraud J; Chulia AJ; Fagnère C
    Eur J Med Chem; 2011 Jun; 46(6):2541-5. PubMed ID: 21497425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Binding characteristics of aromatase inhibitors and phytoestrogens to human aromatase.
    Chen S; Kao YC; Laughton CA
    J Steroid Biochem Mol Biol; 1997 Apr; 61(3-6):107-15. PubMed ID: 9365179
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of human CYP19 by azoles used as antifungal agents and aromatase inhibitors, using a new LC-MS/MS method for the analysis of estradiol product formation.
    Trösken ER; Fischer K; Völkel W; Lutz WK
    Toxicology; 2006 Feb; 219(1-3):33-40. PubMed ID: 16330141
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design, synthesis and biological evaluation of bis(hydroxyphenyl) azoles as potent and selective non-steroidal inhibitors of 17beta-hydroxysteroid dehydrogenase type 1 (17beta-HSD1) for the treatment of estrogen-dependent diseases.
    Bey E; Marchais-Oberwinkler S; Kruchten P; Frotscher M; Werth R; Oster A; Algül O; Neugebauer A; Hartmann RW
    Bioorg Med Chem; 2008 Jun; 16(12):6423-35. PubMed ID: 18514529
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.