These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
8. Mechanisms for activating Cu- and Zn-containing superoxide dismutase in the absence of the CCS Cu chaperone. Carroll MC; Girouard JB; Ulloa JL; Subramaniam JR; Wong PC; Valentine JS; Culotta VC Proc Natl Acad Sci U S A; 2004 Apr; 101(16):5964-9. PubMed ID: 15069187 [TBL] [Abstract][Full Text] [Related]
9. An essential role of N-terminal domain of copper chaperone in the enzymatic activation of Cu/Zn-superoxide dismutase. Fukuoka M; Tokuda E; Nakagome K; Wu Z; Nagano I; Furukawa Y J Inorg Biochem; 2017 Oct; 175():208-216. PubMed ID: 28780408 [TBL] [Abstract][Full Text] [Related]
10. A gain of superoxide dismutase (SOD) activity obtained with CCS, the copper metallochaperone for SOD1. Schmidt PJ; Ramos-Gomez M; Culotta VC J Biol Chem; 1999 Dec; 274(52):36952-6. PubMed ID: 10601249 [TBL] [Abstract][Full Text] [Related]
12. Copper chaperone for superoxide dismutase is essential to activate mammalian Cu/Zn superoxide dismutase. Wong PC; Waggoner D; Subramaniam JR; Tessarollo L; Bartnikas TB; Culotta VC; Price DL; Rothstein J; Gitlin JD Proc Natl Acad Sci U S A; 2000 Mar; 97(6):2886-91. PubMed ID: 10694572 [TBL] [Abstract][Full Text] [Related]
13. Oxygen-induced maturation of SOD1: a key role for disulfide formation by the copper chaperone CCS. Furukawa Y; Torres AS; O'Halloran TV EMBO J; 2004 Jul; 23(14):2872-81. PubMed ID: 15215895 [TBL] [Abstract][Full Text] [Related]
14. Yeast copper-zinc superoxide dismutase can be activated in the absence of its copper chaperone. Sea KW; Sheng Y; Lelie HL; Kane Barnese L; Durazo A; Valentine JS; Gralla EB J Biol Inorg Chem; 2013 Dec; 18(8):985-92. PubMed ID: 24061560 [TBL] [Abstract][Full Text] [Related]
15. Species-specific activation of Cu/Zn SOD by its CCS copper chaperone in the pathogenic yeast Candida albicans. Gleason JE; Li CX; Odeh HM; Culotta VC J Biol Inorg Chem; 2014 Jun; 19(4-5):595-603. PubMed ID: 24043471 [TBL] [Abstract][Full Text] [Related]
16. A multinuclear copper(I) cluster forms the dimerization interface in copper-loaded human copper chaperone for superoxide dismutase. Stasser JP; Siluvai GS; Barry AN; Blackburn NJ Biochemistry; 2007 Oct; 46(42):11845-56. PubMed ID: 17902702 [TBL] [Abstract][Full Text] [Related]
17. Mechanisms of the copper-dependent turnover of the copper chaperone for superoxide dismutase. Caruano-Yzermans AL; Bartnikas TB; Gitlin JD J Biol Chem; 2006 May; 281(19):13581-13587. PubMed ID: 16531609 [TBL] [Abstract][Full Text] [Related]
18. Crystal structure of the second domain of the human copper chaperone for superoxide dismutase. Lamb AL; Wernimont AK; Pufahl RA; O'Halloran TV; Rosenzweig AC Biochemistry; 2000 Feb; 39(7):1589-95. PubMed ID: 10677207 [TBL] [Abstract][Full Text] [Related]
19. Copper stabilizes a heterodimer of the yCCS metallochaperone and its target superoxide dismutase. Torres AS; Petri V; Rae TD; O'Halloran TV J Biol Chem; 2001 Oct; 276(42):38410-6. PubMed ID: 11473116 [TBL] [Abstract][Full Text] [Related]
20. Oxygen and the copper chaperone CCS regulate posttranslational activation of Cu,Zn superoxide dismutase. Brown NM; Torres AS; Doan PE; O'Halloran TV Proc Natl Acad Sci U S A; 2004 Apr; 101(15):5518-23. PubMed ID: 15064408 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]