BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 10944583)

  • 21. Spontaneous calcium transients regulate myofibrillogenesis in embryonic Xenopus myocytes.
    Ferrari MB; Rohrbough J; Spitzer NC
    Dev Biol; 1996 Sep; 178(2):484-97. PubMed ID: 8812144
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Imaging and manipulating calcium transients in developing Xenopus spinal neurons.
    Spitzer NC; Borodinsky LN; Root CM
    Cold Spring Harb Protoc; 2013 Jul; 2013(7):653-64. PubMed ID: 23818661
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development of depolarization-induced calcium transients in insect glial cells is dependent on the presence of afferent axons.
    Lohr C; Tucker E; Oland LA; Tolbert LP
    J Neurobiol; 2002 Aug; 52(2):85-98. PubMed ID: 12124748
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Growth factors differentially regulate neuronal Cav channels via ERK-dependent signalling.
    Woodall AJ; Richards MA; Turner DJ; Fitzgerald EM
    Cell Calcium; 2008 Jun; 43(6):562-75. PubMed ID: 17996937
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Depolarization promotes GAD 65-mediated GABA synthesis by a post-translational mechanism in neural stem cell-derived neurons.
    Gakhar-Koppole N; Bengtson CP; Parlato R; Horsch K; Eckstein V; Ciccolini F
    Eur J Neurosci; 2008 Jan; 27(2):269-83. PubMed ID: 18190521
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Kynurenate treatment of autaptic hippocampal microcultures affect localized voltage-dependent calcium diffusion in the dendrites.
    Padmashri R; Ganguly A; Mondal PP; Rajan K; Sikdar SK
    Cell Calcium; 2006 Mar; 39(3):247-58. PubMed ID: 16384599
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Stimulation of 5-HT(2) receptors in prefrontal pyramidal neurons inhibits Ca(v)1.2 L type Ca(2+) currents via a PLCbeta/IP3/calcineurin signaling cascade.
    Day M; Olson PA; Platzer J; Striessnig J; Surmeier DJ
    J Neurophysiol; 2002 May; 87(5):2490-504. PubMed ID: 11976386
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The generation of localized calcium rises mediated by cell adhesion molecules and their role in neuronal growth cone motility.
    Dunican DJ; Doherty P
    Mol Cell Biol Res Commun; 2000 May; 3(5):255-63. PubMed ID: 10964748
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Functional specificity of T-type calcium channels and their roles in neuronal differentiation].
    Chemin J; Monteil A; Lory P
    J Soc Biol; 2003; 197(3):235-47. PubMed ID: 14708345
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Suppressor of cytokine signaling 2 regulates neuronal differentiation by inhibiting growth hormone signaling.
    Turnley AM; Faux CH; Rietze RL; Coonan JR; Bartlett PF
    Nat Neurosci; 2002 Nov; 5(11):1155-62. PubMed ID: 12368809
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Growth hormone and SOCS2 regulation of neuronal differentiation: possible role in mental function.
    Turnley AM
    Pediatr Endocrinol Rev; 2005 Mar; 2(3):366-71. PubMed ID: 16429112
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Activity-dependent neuronal differentiation prior to synapse formation: the functions of calcium transients.
    Spitzer NC
    J Physiol Paris; 2002; 96(1-2):73-80. PubMed ID: 11755785
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Vascular endothelial growth factor acutely reduces calcium influx via inhibition of the Ca2+ channels in rat hippocampal neurons.
    Ma YY; Li KY; Wang JJ; Huang YL; Huang Y; Sun FY
    J Neurosci Res; 2009 Feb; 87(2):393-402. PubMed ID: 18803284
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ca(2+)-independent spine dynamics in cultured hippocampal neurons.
    Zhang S; Murphy TH
    Mol Cell Neurosci; 2004 Feb; 25(2):334-44. PubMed ID: 15019949
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Insulin activates native and recombinant large conductance Ca(2+)-activated potassium channels via a mitogen-activated protein kinase-dependent process.
    O'Malley D; Harvey J
    Mol Pharmacol; 2004 Jun; 65(6):1352-63. PubMed ID: 15155829
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Two signal transduction pathways involved in the catecholaminergic differentiation of avian neural crest-derived cells in vitro.
    Wu X; Howard MJ
    Mol Cell Neurosci; 2001 Oct; 18(4):394-406. PubMed ID: 11640896
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Controlling the urge for a Ca(2+) surge: all-or-none Ca(2+) release in neurons.
    Usachev YM; Thayer SA
    Bioessays; 1999 Sep; 21(9):743-50. PubMed ID: 10462414
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Outside and in: development of neuronal excitability.
    Spitzer NC; Kingston PA; Manning TJ; Conklin MW
    Curr Opin Neurobiol; 2002 Jun; 12(3):315-23. PubMed ID: 12049939
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spontaneous calcium influx and its roles in differentiation of spinal neurons in culture.
    Holliday J; Spitzer NC
    Dev Biol; 1990 Sep; 141(1):13-23. PubMed ID: 2167857
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Orchestrating neuronal differentiation: patterns of Ca2+ spikes specify transmitter choice.
    Spitzer NC; Root CM; Borodinsky LN
    Trends Neurosci; 2004 Jul; 27(7):415-21. PubMed ID: 15219741
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.