These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 10944791)

  • 1. The changes of capacitance relaxation of bilayer lipid membranes induced by chlorpromazine.
    Hianik T; Fajkus M; Tarus B; Sargent DF; Markin VS; Landers DF
    Pharmazie; 2000 Jul; 55(7):546-7. PubMed ID: 10944791
    [No Abstract]   [Full Text] [Related]  

  • 2. Partition of chlorpromazine into lipid bilayer membranes: the effect of membrane structure and composition.
    Luxnat M; Galla HJ
    Biochim Biophys Acta; 1986 Apr; 856(2):274-82. PubMed ID: 3955043
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Capacitance and resistance of the bilayer lipid membrane formed of phosphatidylcholine and cholesterol.
    Naumowicz M; Petelska AD; Figaszewski ZA
    Cell Mol Biol Lett; 2003; 8(1):5-18. PubMed ID: 12655351
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of chlorpromazine with phospholipid membranes. An EPR study of membrane surface potential effects.
    Anteneodo C; Bisch PM; Marques JF
    Eur Biophys J; 1995; 23(6):447-52. PubMed ID: 7729369
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Voltage-dependent behaviour of dolichyl phosphate-phosphatidylcholine bilayer lipid membranes.
    Janas T; Kuczera J; Chojnacki T
    Chem Phys Lipids; 1990 Jan; 52(2):151-5. PubMed ID: 2311140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Octyl-beta-D-glucopyranoside partitioning into lipid bilayers: thermodynamics of binding and structural changes of the bilayer.
    Wenk MR; Alt T; Seelig A; Seelig J
    Biophys J; 1997 Apr; 72(4):1719-31. PubMed ID: 9083676
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics and thermodynamics of chlorpromazine interaction with lipid bilayers: effect of charge and cholesterol.
    Martins PT; Velazquez-Campoy A; Vaz WL; Cardoso RM; Valério J; Moreno MJ
    J Am Chem Soc; 2012 Mar; 134(9):4184-95. PubMed ID: 22296285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of the photodecomposition of chlorpromazine on lecithin monolayers.
    Nejmeh M; Pilpel N
    J Pharm Pharmacol; 1978 Dec; 30(12):748-53. PubMed ID: 32237
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combined influence of cholesterol and synthetic amphiphillic peptides upon bilayer thickness in model membranes.
    Nezil FA; Bloom M
    Biophys J; 1992 May; 61(5):1176-83. PubMed ID: 1600079
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ESR study of membrane perturbation and the lysis of liposomes induced by chlorpromazine.
    Morimoto Y; Hosokawa M; Sayo H; Takeuchi Y
    Chem Pharm Bull (Tokyo); 1994 Jan; 42(1):123-9. PubMed ID: 8124759
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular dynamics studies of the molecular structure and interactions of cholesterol superlattices and random domains in an unsaturated phosphatidylcholine bilayer membrane.
    Zhu Q; Cheng KH; Vaughn MW
    J Phys Chem B; 2007 Sep; 111(37):11021-31. PubMed ID: 17718554
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics membrane disruption due to drug interactions of chlorpromazine hydrochloride.
    Nussio MR; Sykes MJ; Miners JO; Shapter JG
    Langmuir; 2009 Jan; 25(2):1086-90. PubMed ID: 19093750
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The electrical capacitance of phospholipid membranes.
    Ohki S
    Biophys J; 1969 Oct; 9(10):1195-205. PubMed ID: 5387906
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ion channel behavior of amphotericin B in sterol-free and cholesterol- or ergosterol-containing supported phosphatidylcholine bilayer model membranes investigated by electrochemistry and spectroscopy.
    Huang W; Zhang Z; Han X; Tang J; Wang J; Dong S; Wang E
    Biophys J; 2002 Dec; 83(6):3245-55. PubMed ID: 12496093
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation and characterization of sustained-release microspheres of chlorpromazine.
    Gao ZG; Oh KH; Kim CK
    J Microencapsul; 1998; 15(1):75-83. PubMed ID: 9463809
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bilayer membrane formation in the chenodeoxycholate, phosphatidylcholine and cholesterol solution.
    Igimi H; Murata K
    J Pharmacobiodyn; 1983 Apr; 6(4):261-6. PubMed ID: 6194282
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High yield, reproducible and quasi-automated bilayer formation in a microfluidic format.
    Stimberg VC; Bomer JG; van Uitert I; van den Berg A; Le Gac S
    Small; 2013 Apr; 9(7):1076-85. PubMed ID: 23139010
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The interfacial tension of the lipid membrane formed from lipid-cholesterol and lipid-lipid systems.
    Petelska AD; Naumowicz M; Figaszewski ZA
    Cell Biochem Biophys; 2006; 44(2):205-11. PubMed ID: 16456222
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of carboxylic acids on permeation of chlorpromazine through dimethyl polysiloxane membrane.
    Gasco MR; Trotta M; Carlotti ME
    J Pharm Sci; 1982 Feb; 71(2):239-41. PubMed ID: 7062253
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Early events in photodynamic therapy: chemical and physical changes in a POPC:cholesterol bilayer due to hematoporphyrin IX-mediated photosensitization.
    Santos A; Rodrigues AM; Sobral AJ; Monsanto PV; Vaz WL; Moreno MJ
    Photochem Photobiol; 2009; 85(6):1409-17. PubMed ID: 19706142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.