BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

530 related articles for article (PubMed ID: 10945534)

  • 41. A three-dimensional ray-driven attenuation, scatter and geometric response correction technique for SPECT in inhomogeneous media.
    Laurette I; Zeng GL; Welch A; Christian PE; Gullberg GT
    Phys Med Biol; 2000 Nov; 45(11):3459-80. PubMed ID: 11098917
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Scatter and attenuation correction for 111In based on energy spectrum fitting.
    Kaplan MS; Miyaoka RS; Kohlmyer SK; Haynor DR; Harrison RL; Lewellen TK
    Med Phys; 1996 Jul; 23(7):1277-85. PubMed ID: 8839424
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Transmission imaging for nonuniform attenuation correction using a three-headed SPECT camera.
    Gilland DR; Jaszczak RJ; Greer KL; Coleman RE
    J Nucl Med; 1998 Jun; 39(6):1105-10. PubMed ID: 9627354
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Estimation of attenuation maps from scatter and photopeak window single photon-emission computed tomographic images of technetium 99m-labeled sestamibi.
    Pan TS; King MA; Luo DS; Dahlberg ST; Villegas BJ
    J Nucl Cardiol; 1997; 4(1 Pt 1):42-51. PubMed ID: 9138839
    [TBL] [Abstract][Full Text] [Related]  

  • 45. IQ SPECT allows a significant reduction in administered dose and acquisition time for myocardial perfusion imaging: evidence from a phantom study.
    Caobelli F; Kaiser SR; Thackeray JT; Bengel FM; Chieregato M; Soffientini A; Pizzocaro C; Savelli G; Galelli M; Guerra UP
    J Nucl Med; 2014 Dec; 55(12):2064-70. PubMed ID: 25413138
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Performance evaluation of OSEM reconstruction algorithm incorporating three-dimensional distance-dependent resolution compensation for brain SPECT: a simulation study.
    Yokoi T; Shinohara H; Onishi H
    Ann Nucl Med; 2002 Feb; 16(1):11-8. PubMed ID: 11922203
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Should scatter be corrected in both transmission and emission data for accurate quantitation in cardiac SPET?
    El Fakhri G; Buvat I; Almeida P; Bendriem B; Todd-Pokropek A; Benali H
    Eur J Nucl Med; 2000 Sep; 27(9):1356-64. PubMed ID: 11007518
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Establishment of a clinical SPECT/CT protocol for imaging of
    Marin I; Rydèn T; Van Essen M; Svensson J; Gracheva N; Köster U; Zeevaart JR; van der Meulen NP; Müller C; Bernhardt P
    EJNMMI Phys; 2020 Jul; 7(1):45. PubMed ID: 32613587
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Fully 3D Monte Carlo reconstruction in SPECT: a feasibility study.
    Lazaro D; El Bitar Z; Breton V; Hill D; Buvat I
    Phys Med Biol; 2005 Aug; 50(16):3739-54. PubMed ID: 16077224
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Model-based compensation for quantitative 123I brain SPECT imaging.
    Du Y; Tsui BM; Frey EC
    Phys Med Biol; 2006 Mar; 51(5):1269-82. PubMed ID: 16481693
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Importance of bone attenuation in brain SPECT quantification.
    Stodilka RZ; Kemp BJ; Prato FS; Nicholson RL
    J Nucl Med; 1998 Jan; 39(1):190-7. PubMed ID: 9443760
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A comparison of different energy window subtraction methods to correct for scatter and downscatter in I-123 SPECT imaging.
    Lagerburg V; de Nijs R; Holm S; Svarer C
    Nucl Med Commun; 2012 Jul; 33(7):708-18. PubMed ID: 22513883
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Receiver operating characteristic evaluation of iterative reconstruction with attenuation correction in 99mTc-sestamibi myocardial SPECT images.
    LaCroix KJ; Tsui BM; Frey EC; Jaszczak RJ
    J Nucl Med; 2000 Mar; 41(3):502-13. PubMed ID: 10716326
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Transmission-based scatter correction of 180 degrees myocardial single-photon emission tomographic studies.
    Hutton BF; Osiecki A; Meikle SR
    Eur J Nucl Med; 1996 Oct; 23(10):1300-8. PubMed ID: 8781133
    [TBL] [Abstract][Full Text] [Related]  

  • 55. CT-based SPECT attenuation correction and assessment of infarct size: results from a cardiac phantom study.
    Kroiss AS; Nekolla SG; Dobrozemsky G; Grubinger T; Shulkin BL; Schwaiger M
    Ann Nucl Med; 2017 Dec; 31(10):764-772. PubMed ID: 28936780
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Implementation of a model-based nonuniform scatter correction scheme for SPECT.
    Welch A; Gullberg GT
    IEEE Trans Med Imaging; 1997 Dec; 16(6):717-26. PubMed ID: 9533573
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Multiple line source array for SPECT transmission scans: simulation, phantom and patient studies.
    Celler A; Sitek A; Stoub E; Hawman P; Harrop R; Lyster D
    J Nucl Med; 1998 Dec; 39(12):2183-9. PubMed ID: 9867166
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A slice-by-slice blurring model and kernel evaluation using the Klein-Nishina formula for 3D scatter compensation in parallel and converging beam SPECT.
    Bai C; Zeng GL; Gullberg GT
    Phys Med Biol; 2000 May; 45(5):1275-307. PubMed ID: 10843105
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Using fast sequential asymmetric fanbeam transmission CT for attenuation correction of cardiac SPECT imaging.
    Hollinger EF; Loncaric S; Yu DC; Ali A; Chang W
    J Nucl Med; 1998 Aug; 39(8):1335-44. PubMed ID: 9708502
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Multi-center study for the evaluation of clinical usefulness of attenuation and scatter correction on 201Tl myocardial SPECT].
    Tomiguchi S; Kumita S; Hashimoto J; Inoue T; Nomura Y; Emoto J; Nakajima K; Nishimura T
    Kaku Igaku; 2002 Feb; 39(1):37-46. PubMed ID: 11915311
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.