BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 10945583)

  • 1. Modeling the germination kinetics of clostridium botulinum 56A spores as affected by temperature, pH, and sodium chloride.
    Chea FP; Chen Y; Montville TJ; Schaffner DW
    J Food Prot; 2000 Aug; 63(8):1071-9. PubMed ID: 10945583
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predictive model of the effect of temperature, pH and sodium chloride on growth from spores of non-proteolytic Clostridium botulinum.
    Graham AF; Mason DR; Peck MW
    Int J Food Microbiol; 1996 Aug; 31(1-3):69-85. PubMed ID: 8880298
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The synergic interaction between environmental factors (pH and NaCl) and the physiological state (vegetative cells and spores) provides new possibilities for optimizing processes to manage risk of C. sporogenes spoilage.
    Boix E; Couvert O; André S; Coroller L
    Food Microbiol; 2021 Dec; 100():103832. PubMed ID: 34416948
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibitory effect of combinations of heat treatment, pH, and sodium chloride on a growth from spores of nonproteolytic Clostridium botulinum at refrigeration temperature.
    Graham AF; Mason DR; Peck MW
    Appl Environ Microbiol; 1996 Jul; 62(7):2664-8. PubMed ID: 8779606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of pH and NaCl on growth from spores of non-proteolytic Clostridium botulinum at chill temperature.
    Graham AF; Mason DR; Maxwell FJ; Peck MW
    Lett Appl Microbiol; 1997 Feb; 24(2):95-100. PubMed ID: 9081311
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time-to-detection, percent-growth-positive and maximum growth rate models for Clostridium botulinum 56A at multiple temperatures.
    Zhao L; Montville TJ; Schaffner DW
    Int J Food Microbiol; 2002 Aug; 77(3):187-97. PubMed ID: 12160078
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Minimal growth temperature, sodium chloride tolerance, pH sensitivity, and toxin production of marine and terrestrial strains of Clostridium botulinum type C.
    Segner WP; Schmidt CF; Boltz JK
    Appl Microbiol; 1971 Dec; 22(6):1025-9. PubMed ID: 4944801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of sodium chloride and temperature on the rate and extent of growth of Clostridium botulinum type A in pasteurized pork slurry.
    Gibson AM; Bratchell N; Roberts TA
    J Appl Bacteriol; 1987 Jun; 62(6):479-90. PubMed ID: 3305458
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of acid and salt concentration in fresh-pack pickles on the growth of Clostridium botulinum spores.
    Ito KA; Chen JK; Lerke PA; Seeger ML; Unverferth JA
    Appl Environ Microbiol; 1976 Jul; 32(1):121-4. PubMed ID: 9898
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time-to-turbidity model for non-protective type B Clostridium botulinum.
    Whiting RC; Oriente JC
    Int J Food Microbiol; 1997 Apr; 36(1):49-60. PubMed ID: 9168314
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Historical and contemporary NaCl concentrations affect the duration and distribution of lag times from individual spores of nonproteolytic clostridium botulinum.
    Webb MD; Pin C; Peck MW; Stringer SC
    Appl Environ Microbiol; 2007 Apr; 73(7):2118-27. PubMed ID: 17277206
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth characteristics of type E Clostridium botulinum in the temperature range of 34 to 50 degrees F. TID-24781.
    TID Rep; 1966 Jan; ():1-57. PubMed ID: 4905221
    [No Abstract]   [Full Text] [Related]  

  • 13. Growth and germination of proteolytic Clostridium botulinum in vegetable-based media.
    Braconnier A; Broussolle V; Dargaignaratz C; Nguyen-The C; Carlin F
    J Food Prot; 2003 May; 66(5):833-9. PubMed ID: 12747693
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synergistic interaction between pH and NaCl in the limits of germination and outgrowth of Clostridium sporogenes and Group I Clostridium botulinum vegetative cells and spores after heat treatment.
    Boix E; Coroller L; Couvert O; Planchon S; van Vliet AHM; Brunt J; Peck MW; Rasetti-Escargueil C; Lemichez E; Popoff MR; André S
    Food Microbiol; 2022 Sep; 106():104055. PubMed ID: 35690448
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Response surface model for prediction of growth parameters from spores of Clostridium sporogenes under different experimental conditions.
    Dong Q; Tu K; Guo L; Li H; Zhao Y
    Food Microbiol; 2007 Sep; 24(6):624-32. PubMed ID: 17418314
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Germination of spores from Clostridium botulinum B-aphis and Ba410.
    Montville TJ; Jones SB; Conway LK; Sapers GM
    Appl Environ Microbiol; 1985 Oct; 50(4):795-800. PubMed ID: 3909964
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of nonproteolytic Clostridium botulinum types B and E in crab analogs by combinations of heat pasteurization and water phase salt.
    Peterson ME; Paranjpye RN; Poysky FT; Pelroy GA; Eklund MW
    J Food Prot; 2002 Jan; 65(1):130-9. PubMed ID: 11808784
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of postirradiation incubation temperature on recovery of radiation-injured Clostridium botulinum 62A spores.
    Chowdhury MS; Rowley DB; Anellis A; Levinson HS
    Appl Environ Microbiol; 1976 Jul; 32(1):172-8. PubMed ID: 788635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Does proximity to neighbours affect germination of spores of non-proteolytic Clostridium botulinum?
    Webb MD; Stringer SC; Le Marc Y; Baranyi J; Peck MW
    Food Microbiol; 2012 Oct; 32(1):104-9. PubMed ID: 22850380
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contrasting effects of heat treatment and incubation temperature on germination and outgrowth of individual spores of nonproteolytic Clostridium botulinum bacteria.
    Stringer SC; Webb MD; Peck MW
    Appl Environ Microbiol; 2009 May; 75(9):2712-9. PubMed ID: 19270146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.