BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 10945793)

  • 1. Role of rhamnolipid biosurfactants in the uptake and mineralization of hexadecane in Pseudomonas aeruginosa.
    Beal R; Betts WB
    J Appl Microbiol; 2000 Jul; 89(1):158-68. PubMed ID: 10945793
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rhamnolipid biosurfactant enhancement of hexadecane biodegradation by Pseudomonas aeruginosa.
    Shreve GS; Inguva S; Gunnam S
    Mol Mar Biol Biotechnol; 1995 Dec; 4(4):331-7. PubMed ID: 8541984
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrocarbon assimilation and biosurfactant production in Pseudomonas aeruginosa mutants.
    Koch AK; Käppeli O; Fiechter A; Reiser J
    J Bacteriol; 1991 Jul; 173(13):4212-9. PubMed ID: 1648079
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessing the role of Pseudomonas aeruginosa surface-active gene expression in hexadecane biodegradation in sand.
    Holden PA; LaMontagne MG; Bruce AK; Miller WG; Lindow SE
    Appl Environ Microbiol; 2002 May; 68(5):2509-18. PubMed ID: 11976128
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rhamnolipid stimulates uptake of hydrophobic compounds by Pseudomonas aeruginosa.
    Noordman WH; Janssen DB
    Appl Environ Microbiol; 2002 Sep; 68(9):4502-8. PubMed ID: 12200306
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rhamnolipid (biosurfactant) effects on cell aggregation and biodegradation of residual hexadecane under saturated flow conditions.
    Herman DC; Zhang Y; Miller RM
    Appl Environ Microbiol; 1997 Sep; 63(9):3622-7. PubMed ID: 9293014
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of rhamnolipid solubilization on hexadecane bioavailability: enhancement or reduction?
    Liu Y; Zeng G; Zhong H; Wang Z; Liu Z; Cheng M; Liu G; Yang X; Liu S
    J Hazard Mater; 2017 Jan; 322(Pt B):394-401. PubMed ID: 27773441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The enhancement by surfactants of hexadecane degradation by Pseudomonas aeruginosa varies with substrate availability.
    Noordman WH; Wachter JH; de Boer GJ; Janssen DB
    J Biotechnol; 2002 Mar; 94(2):195-212. PubMed ID: 11796172
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced octadecane dispersion and biodegradation by a Pseudomonas rhamnolipid surfactant (biosurfactant).
    Zhang Y; Miller RM
    Appl Environ Microbiol; 1992 Oct; 58(10):3276-82. PubMed ID: 1444363
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation and characterization of a regulatory gene affecting rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa.
    Ochsner UA; Koch AK; Fiechter A; Reiser J
    J Bacteriol; 1994 Apr; 176(7):2044-54. PubMed ID: 8144472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rhamnolipid-induced removal of lipopolysaccharide from Pseudomonas aeruginosa: effect on cell surface properties and interaction with hydrophobic substrates.
    Al-Tahhan RA; Sandrin TR; Bodour AA; Maier RM
    Appl Environ Microbiol; 2000 Aug; 66(8):3262-8. PubMed ID: 10919779
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diversity of bacterial strains degrading hexadecane in relation to the mode of substrate uptake.
    Bouchez-Naïtali M; Rakatozafy H; Marchal R; Leveau JY; Vandecasteele JP
    J Appl Microbiol; 1999 Mar; 86(3):421-8. PubMed ID: 10196747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of rhamnolipid biosurfactant by fed-batch culture of Pseudomonas aeruginosa using glucose as a sole carbon source.
    Lee Y; Lee SY; Yang JW
    Biosci Biotechnol Biochem; 1999 May; 63(5):946-7. PubMed ID: 10380638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of a Pseudomonas rhamnolipid biosurfactant on cell hydrophobicity and biodegradation of octadecane.
    Zhang Y; Miller RM
    Appl Environ Microbiol; 1994 Jun; 60(6):2101-6. PubMed ID: 8031099
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selection and partial characterization of a Pseudomonas aeruginosa mono-rhamnolipid deficient mutant.
    Wild M; Caro AD; Hernández AL; Miller RM; Soberón-Chávez G
    FEMS Microbiol Lett; 1997 Aug; 153(2):279-85. PubMed ID: 9271853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High mono-rhamnolipids production by a novel isolate Pseudomonas aeruginosa LP20 from oily sludge: characterization, optimization, and potential application.
    Li C; Wang Y; Zhou L; Cui Q; Sun W; Yang J; Su H; Zhao F
    Lett Appl Microbiol; 2024 Feb; 77(2):. PubMed ID: 38366661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pseudomonas aeruginosa UG2 rhamnolipid biosurfactants: structural characterization and their use in removing hydrophobic compounds from soil.
    Van Dyke MI; Couture P; Brauer M; Lee H; Trevors JT
    Can J Microbiol; 1993 Nov; 39(11):1071-8. PubMed ID: 8306209
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface-active properties of rhamnolipids from Pseudomonas aeruginosa GS3.
    Patel RM; Desai AJ
    J Basic Microbiol; 1997; 37(4):281-6. PubMed ID: 9323868
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of low-concentration rhamnolipid on transport of Pseudomonas aeruginosa ATCC 9027 in an ideal porous medium with hydrophilic or hydrophobic surfaces.
    Zhong H; Liu G; Jiang Y; Brusseau ML; Liu Z; Liu Y; Zeng G
    Colloids Surf B Biointerfaces; 2016 Mar; 139():244-8. PubMed ID: 26722821
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel insights into biosynthesis and uptake of rhamnolipids and their precursors.
    Wittgens A; Kovacic F; Müller MM; Gerlitzki M; Santiago-Schübel B; Hofmann D; Tiso T; Blank LM; Henkel M; Hausmann R; Syldatk C; Wilhelm S; Rosenau F
    Appl Microbiol Biotechnol; 2017 Apr; 101(7):2865-2878. PubMed ID: 27988798
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.