BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 10945793)

  • 21. Extracellular particles of polymeric material formed in n-hexadecane fermentation by Pseudomonas aeruginosa.
    Wu J; Ju LK
    J Biotechnol; 1997 Jan; 59(3):193-202. PubMed ID: 9519480
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Involvement of a rhamnolipid-producing strain of Pseudomonas aeruginosa in the degradation of polycyclic aromatic hydrocarbons by a bacterial community.
    Arino S; Marchal R; Vandecasteele JP
    J Appl Microbiol; 1998 May; 84(5):769-76. PubMed ID: 9674130
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Production and physico-chemical characterization of a biosurfactant produced by Pseudomonas aeruginosa OBP1 isolated from petroleum sludge.
    Bharali P; Konwar BK
    Appl Biochem Biotechnol; 2011 Aug; 164(8):1444-60. PubMed ID: 21468636
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pseudomonas aeruginosa ATCC 9027 is a non-virulent strain suitable for mono-rhamnolipids production.
    Grosso-Becerra MV; González-Valdez A; Granados-Martínez MJ; Morales E; Servín-González L; Méndez JL; Delgado G; Morales-Espinosa R; Ponce-Soto GY; Cocotl-Yañez M; Soberón-Chávez G
    Appl Microbiol Biotechnol; 2016 Dec; 100(23):9995-10004. PubMed ID: 27566690
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhanced biodegradation and emulsification of crude oil and hyperproduction of biosurfactants by a gamma ray-induced mutant of Pseudomonas aeruginosa.
    Iqbal S; Khalid ZM; Malik KA
    Lett Appl Microbiol; 1995 Sep; 21(3):176-9. PubMed ID: 7576503
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhanced production of mono-rhamnolipid in Pseudomonas aeruginosa and application potential in agriculture and petroleum industry.
    Zhao F; Yuan M; Lei L; Li C; Xu X
    Bioresour Technol; 2021 Mar; 323():124605. PubMed ID: 33388600
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Utilization of mango kernel oil for the rhamnolipid production by Pseudomonas aeruginosa DR1 towards its application as biocontrol agent.
    Sathi Reddy K; Yahya Khan M; Archana K; Gopal Reddy M; Hameeda B
    Bioresour Technol; 2016 Dec; 221():291-299. PubMed ID: 27643738
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Effects of rhamnolipid on the biodegradation of n-hexadecane by microorganism and the cell surface hydrophobicity].
    Chen YJ; Wang HQ; Wang R; Yun Y
    Huan Jing Ke Xue; 2007 Sep; 28(9):2117-22. PubMed ID: 17990568
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Kinetic model of biosurfactant-enhanced hexadecane biodegradation by Pseudomonas aeruginosa.
    Sekelsky AM; Shreve GS
    Biotechnol Bioeng; 1999 May; 63(4):401-9. PubMed ID: 10099620
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Oxygen effects on rhamnolipids production by Pseudomonas aeruginosa.
    Zhao F; Shi R; Ma F; Han S; Zhang Y
    Microb Cell Fact; 2018 Mar; 17(1):39. PubMed ID: 29523151
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Demonstration of bioprocess factors optimization for enhanced mono-rhamnolipid production by a marine Pseudomonas guguanensis.
    C RK; R LS; D A; V S; Vasudevan V; Krishnan MEG
    Int J Biol Macromol; 2018 Mar; 108():531-540. PubMed ID: 29208557
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bioavailability of solid and non-aqueous phase liquid (NAPL)-dissolved phenanthrene to the biosurfactant-producing bacterium Pseudomonas aeruginosa 19SJ.
    García-Junco M; De Olmedo E; Ortega-Calvo JJ
    Environ Microbiol; 2001 Sep; 3(9):561-9. PubMed ID: 11683866
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of rhamnolipid-biosurfactant on cell surface of Pseudomonas aeruginosa.
    Sotirova A; Spasova D; Vasileva-Tonkova E; Galabova D
    Microbiol Res; 2009; 164(3):297-303. PubMed ID: 17416508
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pseudomonas aeruginosa rhamnolipids: biosynthesis and potential applications.
    Maier RM; Soberón-Chávez G
    Appl Microbiol Biotechnol; 2000 Nov; 54(5):625-33. PubMed ID: 11131386
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Production kinetics and tensioactive characteristics of biosurfactant from a Pseudomonas aeruginosa mutant grown on waste frying oils.
    Raza ZA; Khan MS; Khalid ZM; Rehman A
    Biotechnol Lett; 2006 Oct; 28(20):1623-31. PubMed ID: 16955358
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rhamnolipid biosurfactants produced by Renibacterium salmoninarum 27BN during growth on n-hexadecane.
    Christova N; Tuleva B; Lalchev Z; Jordanova A; Jordanov B
    Z Naturforsch C J Biosci; 2004; 59(1-2):70-4. PubMed ID: 15018056
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cloning and functional characterization of the Pseudomonas aeruginosa rhlC gene that encodes rhamnosyltransferase 2, an enzyme responsible for di-rhamnolipid biosynthesis.
    Rahim R; Ochsner UA; Olvera C; Graninger M; Messner P; Lam JS; Soberón-Chávez G
    Mol Microbiol; 2001 May; 40(3):708-18. PubMed ID: 11359576
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Production of biosurfactant from a new and promising strain of Pseudomonas aeruginosa PA1.
    Santa Anna LM; Sebastian GV; Pereira N; Alves TL; Menezes EP; Freire DM
    Appl Biochem Biotechnol; 2001; 91-93():459-67. PubMed ID: 11963874
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microbial degradation of n-hexadecane in mineral salt medium as mediated by degradative enzymes.
    Mishra S; Singh SN
    Bioresour Technol; 2012 May; 111():148-54. PubMed ID: 22405754
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of low-concentration rhamnolipid on adsorption of Pseudomonas aeruginosa ATCC 9027 on hydrophilic and hydrophobic surfaces.
    Zhong H; Jiang Y; Zeng G; Liu Z; Liu L; Liu Y; Yang X; Lai M; He Y
    J Hazard Mater; 2015 Mar; 285():383-8. PubMed ID: 25528238
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.