These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

494 related articles for article (PubMed ID: 10945979)

  • 1. The heat shock protein 90 antagonist novobiocin interacts with a previously unrecognized ATP-binding domain in the carboxyl terminus of the chaperone.
    Marcu MG; Chadli A; Bouhouche I; Catelli M; Neckers LM
    J Biol Chem; 2000 Nov; 275(47):37181-6. PubMed ID: 10945979
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novobiocin and additional inhibitors of the Hsp90 C-terminal nucleotide-binding pocket.
    Donnelly A; Blagg BS
    Curr Med Chem; 2008; 15(26):2702-17. PubMed ID: 18991631
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novobiocin and related coumarins and depletion of heat shock protein 90-dependent signaling proteins.
    Marcu MG; Schulte TW; Neckers L
    J Natl Cancer Inst; 2000 Feb; 92(3):242-8. PubMed ID: 10655441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation of chaperone function and cochaperone interaction by novobiocin in the C-terminal domain of Hsp90: evidence that coumarin antibiotics disrupt Hsp90 dimerization.
    Allan RK; Mok D; Ward BK; Ratajczak T
    J Biol Chem; 2006 Mar; 281(11):7161-71. PubMed ID: 16421106
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of small molecule Hsp90 inhibitors: utilizing both forward and reverse chemical genomics for drug identification.
    Neckers L
    Curr Med Chem; 2003 May; 10(9):733-9. PubMed ID: 12678776
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of Hsf1 activity by novobiocin and geldanamycin.
    Conde R; Belak ZR; Nair M; O'Carroll RF; Ovsenek N
    Biochem Cell Biol; 2009 Dec; 87(6):845-51. PubMed ID: 19935870
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of radicicol with members of the heat shock protein 90 family of molecular chaperones.
    Schulte TW; Akinaga S; Murakata T; Agatsuma T; Sugimoto S; Nakano H; Lee YS; Simen BB; Argon Y; Felts S; Toft DO; Neckers LM; Sharma SV
    Mol Endocrinol; 1999 Sep; 13(9):1435-48. PubMed ID: 10478836
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antibiotic radicicol binds to the N-terminal domain of Hsp90 and shares important biologic activities with geldanamycin.
    Schulte TW; Akinaga S; Soga S; Sullivan W; Stensgard B; Toft D; Neckers LM
    Cell Stress Chaperones; 1998 Jun; 3(2):100-8. PubMed ID: 9672245
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novobiocin induces a distinct conformation of Hsp90 and alters Hsp90-cochaperone-client interactions.
    Yun BG; Huang W; Leach N; Hartson SD; Matts RL
    Biochemistry; 2004 Jun; 43(25):8217-29. PubMed ID: 15209518
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The amino-terminal domain of heat shock protein 90 (hsp90) that binds geldanamycin is an ATP/ADP switch domain that regulates hsp90 conformation.
    Grenert JP; Sullivan WP; Fadden P; Haystead TA; Clark J; Mimnaugh E; Krutzsch H; Ochel HJ; Schulte TW; Sausville E; Neckers LM; Toft DO
    J Biol Chem; 1997 Sep; 272(38):23843-50. PubMed ID: 9295332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence that the novobiocin-sensitive ATP-binding site of the heat shock protein 90 (hsp90) is necessary for its autophosphorylation.
    Langer T; Schlatter H; Fasold H
    Cell Biol Int; 2002; 26(7):653-7. PubMed ID: 12127946
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stimulation of heat shock protein 90 chaperone function through binding of a novobiocin analog KU-32.
    Chatterjee BK; Jayaraj A; Kumar V; Blagg B; Davis RE; Jayaram B; Deep S; Chaudhuri TK
    J Biol Chem; 2019 Apr; 294(16):6450-6467. PubMed ID: 30792306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Hsp90 inhibitor radicicol interacts with the ATP-binding pocket of bacterial sensor kinase PhoQ.
    Guarnieri MT; Zhang L; Shen J; Zhao R
    J Mol Biol; 2008 May; 379(1):82-93. PubMed ID: 18440021
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Binding of immunophilins to the 90 kDa heat shock protein (hsp90) via a tetratricopeptide repeat domain is a conserved protein interaction in plants.
    Owens-Grillo JK; Stancato LF; Hoffmann K; Pratt WB; Krishna P
    Biochemistry; 1996 Dec; 35(48):15249-55. PubMed ID: 8952474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Revisiting silibinin as a novobiocin-like Hsp90 C-terminal inhibitor: Computational modeling and experimental validation.
    Cuyàs E; Verdura S; Micol V; Joven J; Bosch-Barrera J; Encinar JA; Menendez JA
    Food Chem Toxicol; 2019 Oct; 132():110645. PubMed ID: 31254591
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Nucleotide-dependent molecular switch controls ATP binding at the C-terminal domain of Hsp90. N-terminal nucleotide binding unmasks a C-terminal binding pocket.
    Söti C; Rácz A; Csermely P
    J Biol Chem; 2002 Mar; 277(9):7066-75. PubMed ID: 11751878
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of the Hsp90 cochaperone cyclophilin 40 with Hsc70.
    Carrello A; Allan RK; Morgan SL; Owen BA; Mok D; Ward BK; Minchin RF; Toft DO; Ratajczak T
    Cell Stress Chaperones; 2004; 9(2):167-81. PubMed ID: 15497503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural basis for inhibition of the Hsp90 molecular chaperone by the antitumor antibiotics radicicol and geldanamycin.
    Roe SM; Prodromou C; O'Brien R; Ladbury JE; Piper PW; Pearl LH
    J Med Chem; 1999 Jan; 42(2):260-6. PubMed ID: 9925731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. KF25706, a novel oxime derivative of radicicol, exhibits in vivo antitumor activity via selective depletion of Hsp90 binding signaling molecules.
    Soga S; Neckers LM; Schulte TW; Shiotsu Y; Akasaka K; Narumi H; Agatsuma T; Ikuina Y; Murakata C; Tamaoki T; Akinaga S
    Cancer Res; 1999 Jun; 59(12):2931-8. PubMed ID: 10383157
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Penicisulfuranol A, a novel C-terminal inhibitor disrupting molecular chaperone function of Hsp90 independent of ATP binding domain.
    Dai J; Chen A; Zhu M; Qi X; Tang W; Liu M; Li D; Gu Q; Li J
    Biochem Pharmacol; 2019 May; 163():404-415. PubMed ID: 30857829
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.