These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 10946102)

  • 1. Effects of changes in cadence, prosthetic componentry, and time on interface pressures and shear stresses of three trans-tibial amputees.
    Sanders JE; Zachariah SG; Baker AB; Greve JM; Clinton C
    Clin Biomech (Bristol); 2000 Nov; 15(9):684-94. PubMed ID: 10946102
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of fluid insert volume changes on socket pressures and shear stresses: case studies from two trans-tibial amputee subjects.
    Sanders JE; Jacobsen AK; Fergason JR
    Prosthet Orthot Int; 2006 Dec; 30(3):257-69. PubMed ID: 17162516
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of alignment changes on stance phase pressures and shear stresses on transtibial amputees: measurements from 13 transducer sites.
    Sanders JE; Bell DM; Okumura RM; Dralle AJ
    IEEE Trans Rehabil Eng; 1998 Mar; 6(1):21-31. PubMed ID: 9535520
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in interface pressures and shear stresses over time on trans-tibial amputee subjects ambulating with prosthetic limbs: comparison of diurnal and six-month differences.
    Sanders JE; Zachariah SG; Jacobsen AK; Fergason JR
    J Biomech; 2005 Aug; 38(8):1566-73. PubMed ID: 15958212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of lower limb prosthetic socket interface based on stress and motion measurements.
    Tang J; Jiang L; McGrath M; Bader D; Laszczak P; Moser D; Zahedi S
    Proc Inst Mech Eng H; 2022 Sep; 236(9):1349-1356. PubMed ID: 35821656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conventional patellar-tendon-bearing (PTB) socket/stump interface dynamic pressure distributions recorded during the prosthetic stance phase of gait of a trans-tibial amputee.
    Convery P; Buis AW
    Prosthet Orthot Int; 1998 Dec; 22(3):193-8. PubMed ID: 9881607
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interface pressure and shear stress changes with amputee weight loss: case studies from two trans-tibial amputee subjects.
    Sanders JE; Fergason JR; Zachariah SG; Jacobsen AK
    Prosthet Orthot Int; 2002 Dec; 26(3):243-50. PubMed ID: 12562072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clinical investigation of the pressure and shear stress on the trans-tibial stump with a prosthesis.
    Zhang M; Turner-Smith AR; Tanner A; Roberts VC
    Med Eng Phys; 1998 Apr; 20(3):188-98. PubMed ID: 9690489
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interface shear stresses during ambulation with a below-knee prosthetic limb.
    Sanders JE; Daly CH; Burgess EM
    J Rehabil Res Dev; 1992; 29(4):1-8. PubMed ID: 1432723
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Standing interface stresses as a predictor of walking interface stresses in the trans-tibial prosthesis.
    Zachariah SG; Sanders JE
    Prosthet Orthot Int; 2001 Apr; 25(1):34-40. PubMed ID: 11411003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energy flow analysis of amputee walking shows a proximally-directed transfer of energy in intact limbs, compared to a distally-directed transfer in prosthetic limbs at push-off.
    Weinert-Aplin RA; Howard D; Twiste M; Jarvis HL; Bennett AN; Baker RJ
    Med Eng Phys; 2017 Jan; 39():73-82. PubMed ID: 27836575
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact on the biomechanics of overground gait of using an 'Echelon' hydraulic ankle-foot device in unilateral trans-tibial and trans-femoral amputees.
    De Asha AR; Munjal R; Kulkarni J; Buckley JG
    Clin Biomech (Bristol); 2014 Aug; 29(7):728-34. PubMed ID: 24997811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interface pressures and shear stresses: sagittal plane angular alignment effects in three trans-tibial amputee case studies.
    Sanders JE; Daly CH
    Prosthet Orthot Int; 1999 Apr; 23(1):21-9. PubMed ID: 10355640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preliminary investigation of residual limb plantarflexion and dorsiflexion muscle activity during treadmill walking for trans-tibial amputees.
    Silver-Thorn B; Current T; Kuhse B
    Prosthet Orthot Int; 2012 Dec; 36(4):435-42. PubMed ID: 22581661
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A quasi-dynamic nonlinear finite element model to investigate prosthetic interface stresses during walking for trans-tibial amputees.
    Jia X; Zhang M; Li X; Lee WC
    Clin Biomech (Bristol); 2005 Jul; 20(6):630-5. PubMed ID: 15878224
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interface pressures and shear stresses at thirteen socket sites on two persons with transtibial amputation.
    Sanders JE; Lam D; Dralle AJ; Okumura R
    J Rehabil Res Dev; 1997 Jan; 34(1):19-43. PubMed ID: 9021623
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Normal and shear stresses on a residual limb in a prosthetic socket during ambulation: comparison of finite element results with experimental measurements.
    Sanders JE; Daly CH
    J Rehabil Res Dev; 1993; 30(2):191-204. PubMed ID: 8035348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimisation of the prescription for trans-tibial (TT) amputees.
    Cortés A; Viosca E; Hoyos JV; Prat J; Sánchez-Lacuesta J
    Prosthet Orthot Int; 1997 Dec; 21(3):168-74. PubMed ID: 9453087
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of alignment on interface pressure for transtibial amputee during walking.
    Jia X; Suo S; Meng F; Wang R
    Disabil Rehabil Assist Technol; 2008 Nov; 3(6):339-43. PubMed ID: 19127605
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A systematic review of shock-attenuating componentry for lower limb amputees.
    Farrar M; Thomas E
    Prosthet Orthot Int; 2018 Aug; 42(4):367-377. PubMed ID: 29779466
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.