BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 10947169)

  • 1. Lactate improves cardiac efficiency after hemorrhagic shock.
    Kline JA; Thornton LR; Lopaschuk GD; Barbee RW; Watts JA
    Shock; 2000 Aug; 14(2):215-21. PubMed ID: 10947169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of fatty acids in the recovery of cardiac function during resuscitation from hemorrhagic shock.
    Custalow CB; Watts JA; Thornton L; O'Malley P; Barbee RW; Grattan RM; Lopaschuk GD; Kline JA
    Shock; 2001 Mar; 15(3):231-8. PubMed ID: 11236908
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential modulation of glucose, lactate, and pyruvate oxidation by insulin and dichloroacetate in the rat heart.
    Lloyd S; Brocks C; Chatham JC
    Am J Physiol Heart Circ Physiol; 2003 Jul; 285(1):H163-72. PubMed ID: 12793977
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heart function after severe hemorrhagic shock.
    Kline JA; Thornton LR; Lopaschuk GD; Barbee RW; Watts JA
    Shock; 1999 Dec; 12(6):454-61. PubMed ID: 10588514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acute effects of triiodothyronine on glucose and fatty acid metabolism during reperfusion of ischemic rat hearts.
    Liu Q; Clanachan AS; Lopaschuk GD
    Am J Physiol; 1998 Sep; 275(3):E392-9. PubMed ID: 9725804
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carnitine stimulation of glucose oxidation in the fatty acid perfused isolated working rat heart.
    Broderick TL; Quinney HA; Lopaschuk GD
    J Biol Chem; 1992 Feb; 267(6):3758-63. PubMed ID: 1740427
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ranolazine increases active pyruvate dehydrogenase in perfused normoxic rat hearts: evidence for an indirect mechanism.
    Clarke B; Wyatt KM; McCormack JG
    J Mol Cell Cardiol; 1996 Feb; 28(2):341-50. PubMed ID: 8729066
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of dichloroacetate on the metabolism of glucose, pyruvate, acetate, 3-hydroxybutyrate and palmitate in rat diaphragm and heart muscle in vitro and on extraction of glucose, lactate, pyruvate and free fatty acids by dog heart in vivo.
    McAllister A; Allison SP; Randle PJ
    Biochem J; 1973 Aug; 134(4):1067-81. PubMed ID: 4762752
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Depletion of lactate by dichloroacetate reduces cardiac efficiency after hemorrhagic shock.
    Barbee RW; Kline JA; Watts JA
    Shock; 2000 Aug; 14(2):208-14. PubMed ID: 10947168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation of pyruvate dehydrogenase improves heart function and metabolism after hemorrhagic shock.
    Kline JA; Maiorano PC; Schroeder JD; Grattan RM; Vary TC; Watts JA
    J Mol Cell Cardiol; 1997 Sep; 29(9):2465-74. PubMed ID: 9299369
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metoprolol improves cardiac function and modulates cardiac metabolism in the streptozotocin-diabetic rat.
    Sharma V; Dhillon P; Wambolt R; Parsons H; Brownsey R; Allard MF; McNeill JH
    Am J Physiol Heart Circ Physiol; 2008 Apr; 294(4):H1609-20. PubMed ID: 18203848
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mass isotopomer study of anaplerosis from propionate in the perfused rat heart.
    Kasumov T; Cendrowski AV; David F; Jobbins KA; Anderson VE; Brunengraber H
    Arch Biochem Biophys; 2007 Jul; 463(1):110-7. PubMed ID: 17418801
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in citric acid cycle flux and anaplerosis antedate the functional decline in isolated rat hearts utilizing acetoacetate.
    Russell RR; Taegtmeyer H
    J Clin Invest; 1991 Feb; 87(2):384-90. PubMed ID: 1671390
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acetyl-CoA carboxylase control of fatty acid oxidation in hearts from hibernating Richardson's ground squirrels.
    Belke DD; Wang LC; Lopaschuk GD
    Biochim Biophys Acta; 1998 Mar; 1391(1):25-36. PubMed ID: 9518540
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduced effects of L-carnitine on glucose and fatty acid metabolism in myocytes isolated from diabetic rats.
    Abdel-aleem S; Karim AM; Zarouk WA; Taylor DA; el-Awady MK; Lowe JE
    Horm Metab Res; 1997 Sep; 29(9):430-5. PubMed ID: 9370110
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of acetoacetyl-CoA in isolated perfused rat hearts.
    Menahan LA; Hron WT
    Eur J Biochem; 1981 Oct; 119(2):295-9. PubMed ID: 7308186
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of oxidative metabolism in volume-overloaded rat hearts: effect of propionyl-L-carnitine.
    El Alaoui-Talibi Z; Guendouz A; Moravec M; Moravec J
    Am J Physiol; 1997 Apr; 272(4 Pt 2):H1615-24. PubMed ID: 9139943
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contribution of malonyl-CoA decarboxylase to the high fatty acid oxidation rates seen in the diabetic heart.
    Sakamoto J; Barr RL; Kavanagh KM; Lopaschuk GD
    Am J Physiol Heart Circ Physiol; 2000 Apr; 278(4):H1196-204. PubMed ID: 10749714
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fatty acid metabolism and contractile function in the reperfused myocardium. Multinuclear NMR studies of isolated rabbit hearts.
    Johnston DL; Lewandowski ED
    Circ Res; 1991 Mar; 68(3):714-25. PubMed ID: 1742864
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of acetate and octanoate on tricarboxylic acid cycle metabolite disposal during propionate oxidation in the perfused rat heart.
    Sundqvist KE; Peuhkurinen KJ; Hiltunen JK; Hassinen IE
    Biochim Biophys Acta; 1984 Oct; 801(3):429-36. PubMed ID: 6487652
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.