These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 10947197)

  • 1. Defective folding and rapid degradation of mutant proteins is a common disease mechanism in genetic disorders.
    Gregersen N; Bross P; Jørgensen MM; Corydon TJ; Andresen BS
    J Inherit Metab Dis; 2000 Jul; 23(5):441-7. PubMed ID: 10947197
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Misfolded proteins in the endoplasmic reticulum.
    Perlmutter DH
    Lab Invest; 1999 Jun; 79(6):623-38. PubMed ID: 10378505
    [No Abstract]   [Full Text] [Related]  

  • 3. Protein misfolding and degradation in genetic diseases.
    Bross P; Corydon TJ; Andresen BS; Jørgensen MM; Bolund L; Gregersen N
    Hum Mutat; 1999; 14(3):186-98. PubMed ID: 10477427
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein Misfolding Diseases and Therapeutic Approaches.
    Yadav K; Yadav A; Vashistha P; Pandey VP; Dwivedi UN
    Curr Protein Pept Sci; 2019; 20(12):1226-1245. PubMed ID: 31187709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impaired folding and subunit assembly as disease mechanism: the example of medium-chain acyl-CoA dehydrogenase deficiency.
    Bross P; Andresen BS; Gregersen N
    Prog Nucleic Acid Res Mol Biol; 1998; 58():301-37. PubMed ID: 9308370
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of cystic fibrosis transmembrane conductance regulator membrane trafficking: not just from the endoplasmic reticulum to the Golgi.
    Farinha CM; Matos P; Amaral MD
    FEBS J; 2013 Sep; 280(18):4396-406. PubMed ID: 23773658
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid degradation of short-chain acyl-CoA dehydrogenase variants with temperature-sensitive folding defects occurs after import into mitochondria.
    Corydon TJ; Bross P; Jensen TG; Corydon MJ; Lund TB; Jensen UB; Kim JJ; Gregersen N; Bolund L
    J Biol Chem; 1998 May; 273(21):13065-71. PubMed ID: 9582344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical chaperones correct the mutant phenotype of the delta F508 cystic fibrosis transmembrane conductance regulator protein.
    Brown CR; Hong-Brown LQ; Biwersi J; Verkman AS; Welch WJ
    Cell Stress Chaperones; 1996 Jun; 1(2):117-25. PubMed ID: 9222597
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Therapy through chaperones: sense or antisense? Cystic fibrosis as a model disease.
    Amaral MD
    J Inherit Metab Dis; 2006; 29(2-3):477-87. PubMed ID: 16763920
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Base treatment corrects defects due to misfolding of mutant cystic fibrosis transmembrane conductance regulator.
    Namkung W; Kim KH; Lee MG
    Gastroenterology; 2005 Dec; 129(6):1979-90. PubMed ID: 16344066
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chaperones rescue the energetic landscape of mutant CFTR at single molecule and in cell.
    Bagdany M; Veit G; Fukuda R; Avramescu RG; Okiyoneda T; Baaklini I; Singh J; Sovak G; Xu H; Apaja PM; Sattin S; Beitel LK; Roldan A; Colombo G; Balch W; Young JC; Lukacs GL
    Nat Commun; 2017 Aug; 8(1):398. PubMed ID: 28855508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Endoplasmic Reticulum-Targeted Subunit Toxins Provide a New Approach to Rescue Misfolded Mutant Proteins and Revert Cell Models of Genetic Diseases.
    Adnan H; Zhang Z; Park HJ; Tailor C; Che C; Kamani M; Spitalny G; Binnington B; Lingwood C
    PLoS One; 2016; 11(12):e0166948. PubMed ID: 27935997
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Degradation of CFTR by the ubiquitin-proteasome pathway.
    Ward CL; Omura S; Kopito RR
    Cell; 1995 Oct; 83(1):121-7. PubMed ID: 7553863
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural cues involved in endoplasmic reticulum degradation of G85E and G91R mutant cystic fibrosis transmembrane conductance regulator.
    Xiong X; Bragin A; Widdicombe JH; Cohn J; Skach WR
    J Clin Invest; 1997 Sep; 100(5):1079-88. PubMed ID: 9276724
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cystic fibrosis: premature degradation of mutant proteins as a molecular disease mechanism.
    Gelman MS; Kopito RR
    Methods Mol Biol; 2003; 232():27-37. PubMed ID: 12840537
    [No Abstract]   [Full Text] [Related]  

  • 16. Hsp90 cochaperone Aha1 downregulation rescues misfolding of CFTR in cystic fibrosis.
    Wang X; Venable J; LaPointe P; Hutt DM; Koulov AV; Coppinger J; Gurkan C; Kellner W; Matteson J; Plutner H; Riordan JR; Kelly JW; Yates JR; Balch WE
    Cell; 2006 Nov; 127(4):803-15. PubMed ID: 17110338
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutation analysis in mitochondrial fatty acid oxidation defects: Exemplified by acyl-CoA dehydrogenase deficiencies, with special focus on genotype-phenotype relationship.
    Gregersen N; Andresen BS; Corydon MJ; Corydon TJ; Olsen RK; Bolund L; Bross P
    Hum Mutat; 2001 Sep; 18(3):169-89. PubMed ID: 11524729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CFTR and chaperones: processing and degradation.
    Amaral MD
    J Mol Neurosci; 2004; 23(1-2):41-8. PubMed ID: 15126691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biosynthesis and degradation of CFTR.
    Kopito RR
    Physiol Rev; 1999 Jan; 79(1 Suppl):S167-73. PubMed ID: 9922380
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The DeltaF508 cystic fibrosis mutation impairs domain-domain interactions and arrests post-translational folding of CFTR.
    Du K; Sharma M; Lukacs GL
    Nat Struct Mol Biol; 2005 Jan; 12(1):17-25. PubMed ID: 15619635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.