These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 10948195)
21. Evidence for electron transfer from the nitrogenase iron protein to the molybdenum-iron protein without MgATP hydrolysis: characterization of a tight protein-protein complex. Lanzilotta WN; Fisher K; Seefeldt LC Biochemistry; 1996 Jun; 35(22):7188-96. PubMed ID: 8679547 [TBL] [Abstract][Full Text] [Related]
23. Trapping a hydrazine reduction intermediate on the nitrogenase active site. Barney BM; Laryukhin M; Igarashi RY; Lee HI; Dos Santos PC; Yang TC; Hoffman BM; Dean DR; Seefeldt LC Biochemistry; 2005 Jun; 44(22):8030-7. PubMed ID: 15924422 [TBL] [Abstract][Full Text] [Related]
24. Differential effects on N(2) binding and reduction, HD formation, and azide reduction with alpha-195(His)- and alpha-191(Gln)-substituted MoFe proteins of Azotobacter vinelandii nitrogenase. Fisher K; Dilworth MJ; Newton WE Biochemistry; 2000 Dec; 39(50):15570-7. PubMed ID: 11112544 [TBL] [Abstract][Full Text] [Related]
25. Substrate interaction at an iron-sulfur face of the FeMo-cofactor during nitrogenase catalysis. Barney BM; Igarashi RY; Dos Santos PC; Dean DR; Seefeldt LC J Biol Chem; 2004 Dec; 279(51):53621-4. PubMed ID: 15465817 [TBL] [Abstract][Full Text] [Related]
26. Another role for CO with nitrogenase? CO stimulates hydrogen evolution catalyzed by variant Azotobacter vinelandii Mo-nitrogenases. Fisher K; Hare ND; Newton WE Biochemistry; 2014 Oct; 53(39):6151-60. PubMed ID: 25203280 [TBL] [Abstract][Full Text] [Related]
27. Spectroscopic evidence for changes in the redox state of the nitrogenase P-cluster during turnover. Chan JM; Christiansen J; Dean DR; Seefeldt LC Biochemistry; 1999 May; 38(18):5779-85. PubMed ID: 10231529 [TBL] [Abstract][Full Text] [Related]
28. Nitrogenase reactivity: effects of pH on substrate reduction and CO inhibition. Pham DN; Burgess BK Biochemistry; 1993 Dec; 32(49):13725-31. PubMed ID: 8257707 [TBL] [Abstract][Full Text] [Related]
29. FeMo cofactor synthesis by a nifH mutant with altered MgATP reactivity. Gavini N; Burgess BK J Biol Chem; 1992 Oct; 267(29):21179-86. PubMed ID: 1400428 [TBL] [Abstract][Full Text] [Related]
30. Reduction of cyclic and acyclic diazene derivates by Azotobacter vinelandii nitrogenase: diazirine and trans-dimethyldiazene. McKenna CE; Simeonov AM; Eran H; Bravo-Leerabhandh M Biochemistry; 1996 Apr; 35(14):4502-14. PubMed ID: 8605200 [TBL] [Abstract][Full Text] [Related]
31. Altered nitrogenase MoFe proteins from Azotobacter vinelandii. Analysis of MoFe proteins having amino acid substitutions for the conserved cysteine residues within the beta-subunit. May HD; Dean DR; Newton WE Biochem J; 1991 Jul; 277 ( Pt 2)(Pt 2):457-64. PubMed ID: 1650185 [TBL] [Abstract][Full Text] [Related]
32. Nucleotide hydrolysis and protein conformational changes in Azotobacter vinelandii nitrogenase iron protein: defining the function of aspartate 129. Lanzilotta WN; Ryle MJ; Seefeldt LC Biochemistry; 1995 Aug; 34(34):10713-23. PubMed ID: 7662655 [TBL] [Abstract][Full Text] [Related]
33. Catalysis-dependent selenium incorporation and migration in the nitrogenase active site iron-molybdenum cofactor. Spatzal T; Perez KA; Howard JB; Rees DC Elife; 2015 Dec; 4():e11620. PubMed ID: 26673079 [TBL] [Abstract][Full Text] [Related]
34. Variant MoFe proteins of Azotobacter vinelandii: effects of carbon monoxide on electron paramagnetic resonance spectra generated during enzyme turnover. Maskos Z; Fisher K; Sørlie M; Newton WE; Hales BJ J Biol Inorg Chem; 2005 Jun; 10(4):394-406. PubMed ID: 15887041 [TBL] [Abstract][Full Text] [Related]
35. Nitrogenase of Klebsiella pneumoniae nifV mutants. McLean PA; Smith BE; Dixon RA Biochem J; 1983 Jun; 211(3):589-97. PubMed ID: 6349611 [TBL] [Abstract][Full Text] [Related]
36. The [4Fe-4S] cluster domain of the nitrogenase iron protein facilitates conformational changes required for the cooperative binding of two nucleotides. Ryle MJ; Seefeldt LC Biochemistry; 1996 Dec; 35(49):15654-62. PubMed ID: 8961928 [TBL] [Abstract][Full Text] [Related]
37. Model for acetylene reduction by nitrogenase derived from density functional theory. Kästner J; Blöchl PE Inorg Chem; 2005 Jun; 44(13):4568-75. PubMed ID: 15962963 [TBL] [Abstract][Full Text] [Related]
38. Identification of an Fe protein residue (Glu146) of Azotobacter vinelandii nitrogenase that is specifically involved in FeMo cofactor insertion. Ribbe MW; Bursey EH; Burgess BK J Biol Chem; 2000 Jun; 275(23):17631-8. PubMed ID: 10837496 [TBL] [Abstract][Full Text] [Related]
39. Electron inventory, kinetic assignment (E(n)), structure, and bonding of nitrogenase turnover intermediates with C2H2 and CO. Lee HI; Sørlie M; Christiansen J; Yang TC; Shao J; Dean DR; Hales BJ; Hoffman BM J Am Chem Soc; 2005 Nov; 127(45):15880-90. PubMed ID: 16277531 [TBL] [Abstract][Full Text] [Related]
40. An organometallic intermediate during alkyne reduction by nitrogenase. Lee HI; Igarashi RY; Laryukhin M; Doan PE; Dos Santos PC; Dean DR; Seefeldt LC; Hoffman BM J Am Chem Soc; 2004 Aug; 126(31):9563-9. PubMed ID: 15291559 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]