These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 10948267)

  • 1. Six opsins from the butterfly Papilio glaucus: molecular phylogenetic evidence for paralogous origins of red-sensitive visual pigments in insects.
    Briscoe AD
    J Mol Evol; 2000 Aug; 51(2):110-21. PubMed ID: 10948267
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intron splice sites of Papilio glaucus PglRh3 corroborate insect opsin phylogeny.
    Briscoe AD
    Gene; 1999 Apr; 230(1):101-9. PubMed ID: 10196479
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional diversification of lepidopteran opsins following gene duplication.
    Briscoe AD
    Mol Biol Evol; 2001 Dec; 18(12):2270-9. PubMed ID: 11719576
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular diversity of visual pigments in the butterfly Papilio glaucus.
    Briscoe AD
    Naturwissenschaften; 1998 Jan; 85(1):33-5. PubMed ID: 9484709
    [No Abstract]   [Full Text] [Related]  

  • 5. Reconstructing the ancestral butterfly eye: focus on the opsins.
    Briscoe AD
    J Exp Biol; 2008 Jun; 211(Pt 11):1805-13. PubMed ID: 18490396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Opsin cDNA sequences of a UV and green rhodopsin of the satyrine butterfly Bicyclus anynana.
    Vanhoutte KJ; Eggen BJ; Janssen JJ; Stavenga DG
    Insect Biochem Mol Biol; 2002 Nov; 32(11):1383-90. PubMed ID: 12539740
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Beauty in the eye of the beholder: the two blue opsins of lycaenid butterflies and the opsin gene-driven evolution of sexually dimorphic eyes.
    Sison-Mangus MP; Bernard GD; Lampel J; Briscoe AD
    J Exp Biol; 2006 Aug; 209(Pt 16):3079-90. PubMed ID: 16888057
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular characterization of crustacean visual pigments and the evolution of pancrustacean opsins.
    Porter ML; Cronin TW; McClellan DA; Crandall KA
    Mol Biol Evol; 2007 Jan; 24(1):253-68. PubMed ID: 17053049
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The evolution of red color vision is linked to coordinated rhodopsin tuning in lycaenid butterflies.
    Liénard MA; Bernard GD; Allen A; Lassance JM; Song S; Childers RR; Yu N; Ye D; Stephenson A; Valencia-Montoya WA; Salzman S; Whitaker MRL; Calonje M; Zhang F; Pierce NE
    Proc Natl Acad Sci U S A; 2021 Feb; 118(6):. PubMed ID: 33547236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultraviolet and violet receptors express identical mRNA encoding an ultraviolet-absorbing opsin: identification and histological localization of two mRNAs encoding short-wavelength-absorbing opsins in the retina of the butterfly Papilio xuthus.
    Kitamoto J; Ozaki K; Arikawa K
    J Exp Biol; 2000 Oct; 203(Pt 19):2887-94. PubMed ID: 10976026
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two visual pigments in a single photoreceptor cell: identification and histological localization of three mRNAs encoding visual pigment opsins in the retina of the butterfly Papilio xuthus.
    Kitamoto J; Sakamoto K; Ozaki K; Mishina Y; Arikawa K
    J Exp Biol; 1998 May; 201(Pt 9):1255-61. PubMed ID: 9547302
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution and mechanism of spectral tuning of blue-absorbing visual pigments in butterflies.
    Wakakuwa M; Terakita A; Koyanagi M; Stavenga DG; Shichida Y; Arikawa K
    PLoS One; 2010 Nov; 5(11):e15015. PubMed ID: 21124838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Eyeshine and spectral tuning of long wavelength-sensitive rhodopsins: no evidence for red-sensitive photoreceptors among five Nymphalini butterfly species.
    Briscoe AD; Bernard GD
    J Exp Biol; 2005 Feb; 208(Pt 4):687-96. PubMed ID: 15695761
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unique Temporal Expression of Triplicated Long-Wavelength Opsins in Developing Butterfly Eyes.
    Arikawa K; Iwanaga T; Wakakuwa M; Kinoshita M
    Front Neural Circuits; 2017; 11():96. PubMed ID: 29238294
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Honeybee blue- and ultraviolet-sensitive opsins: cloning, heterologous expression in Drosophila, and physiological characterization.
    Townson SM; Chang BS; Salcedo E; Chadwell LV; Pierce NE; Britt SG
    J Neurosci; 1998 Apr; 18(7):2412-22. PubMed ID: 9502802
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contrasting modes of evolution of the visual pigments in Heliconius butterflies.
    Yuan F; Bernard GD; Le J; Briscoe AD
    Mol Biol Evol; 2010 Oct; 27(10):2392-405. PubMed ID: 20478921
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Opsin phylogeny and evolution: a model for blue shifts in wavelength regulation.
    Chang BS; Crandall KA; Carulli JP; Hartl DL
    Mol Phylogenet Evol; 1995 Mar; 4(1):31-43. PubMed ID: 7620634
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The lycaenid butterfly Polyommatus icarus uses a duplicated blue opsin to see green.
    Sison-Mangus MP; Briscoe AD; Zaccardi G; Knüttel H; Kelber A
    J Exp Biol; 2008 Feb; 211(Pt 3):361-9. PubMed ID: 18203991
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular characterization of visual pigments in Branchiopoda and the evolution of opsins in Arthropoda.
    Kashiyama K; Seki T; Numata H; Goto SG
    Mol Biol Evol; 2009 Feb; 26(2):299-311. PubMed ID: 18984904
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Homology modeling suggests a functional role for parallel amino acid substitutions between bee and butterfly red- and green-sensitive opsins.
    Briscoe AD
    Mol Biol Evol; 2002 Jun; 19(6):983-6. PubMed ID: 12032257
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.