These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 10948267)
41. Molecular phylogeny, historical biogeography, and divergence time estimates for swallowtail butterflies of the genus Papilio (Lepidoptera: Papilionidae). Zakharov EV; Caterino MS; Sperling FA Syst Biol; 2004 Apr; 53(2):193-215. PubMed ID: 15205049 [TBL] [Abstract][Full Text] [Related]
42. Spectral shifts of mammalian ultraviolet-sensitive pigments (short wavelength-sensitive opsin 1) are associated with eye length and photic niche evolution. Emerling CA; Huynh HT; Nguyen MA; Meredith RW; Springer MS Proc Biol Sci; 2015 Nov; 282(1819):. PubMed ID: 26582021 [TBL] [Abstract][Full Text] [Related]
43. Early duplication and functional diversification of the opsin gene family in insects. Spaethe J; Briscoe AD Mol Biol Evol; 2004 Aug; 21(8):1583-94. PubMed ID: 15155799 [TBL] [Abstract][Full Text] [Related]
44. Primary structures of chicken cone visual pigments: vertebrate rhodopsins have evolved out of cone visual pigments. Okano T; Kojima D; Fukada Y; Shichida Y; Yoshizawa T Proc Natl Acad Sci U S A; 1992 Jul; 89(13):5932-6. PubMed ID: 1385866 [TBL] [Abstract][Full Text] [Related]
45. Opsin clines in butterflies suggest novel roles for insect photopigments. Frentiu FD; Yuan F; Savage WK; Bernard GD; Mullen SP; Briscoe AD Mol Biol Evol; 2015 Feb; 32(2):368-79. PubMed ID: 25371434 [TBL] [Abstract][Full Text] [Related]
46. The molecular basis for the green-blue sensitivity shift in the rod visual pigments of the European eel. Archer S; Hope A; Partridge JC Proc Biol Sci; 1995 Dec; 262(1365):289-95. PubMed ID: 8587887 [TBL] [Abstract][Full Text] [Related]
47. Absorbance spectra and molecular structure of the blue-sensitive rod visual pigment in the conger eel (Conger conger). Archer S; Hirano J Proc Biol Sci; 1996 Jun; 263(1371):761-7. PubMed ID: 8763796 [TBL] [Abstract][Full Text] [Related]
48. Molecular Evolution of Malacostracan Short Wavelength Sensitive Opsins. Palecanda S; Madrid E; Porter ML J Mol Evol; 2023 Dec; 91(6):806-818. PubMed ID: 37940679 [TBL] [Abstract][Full Text] [Related]
49. Impact of duplicate gene copies on phylogenetic analysis and divergence time estimates in butterflies. Pohl N; Sison-Mangus MP; Yee EN; Liswi SW; Briscoe AD BMC Evol Biol; 2009 May; 9():99. PubMed ID: 19439087 [TBL] [Abstract][Full Text] [Related]
50. Phylogeny and physiology of Drosophila opsins. Carulli JP; Chen DM; Stark WS; Hartl DL J Mol Evol; 1994 Mar; 38(3):250-62. PubMed ID: 8006992 [TBL] [Abstract][Full Text] [Related]
51. The rod opsin pigments from two marsupial species, the South American bare-tailed woolly opossum and the Australian fat-tailed dunnart. Hunt DM; Arrese CA; von Dornum M; Rodger J; Oddy A; Cowing JA; Ager EI; Bowmaker JK; Beazley LD; Shand J Gene; 2003 Dec; 323():157-62. PubMed ID: 14659889 [TBL] [Abstract][Full Text] [Related]
52. The molecular mechanism for the spectral shifts between vertebrate ultraviolet- and violet-sensitive cone visual pigments. Cowing JA; Poopalasundaram S; Wilkie SE; Robinson PR; Bowmaker JK; Hunt DM Biochem J; 2002 Oct; 367(Pt 1):129-35. PubMed ID: 12099889 [TBL] [Abstract][Full Text] [Related]
53. The "five-sites" rule and the evolution of red and green color vision in mammals. Yokoyama S; Radlwimmer FB Mol Biol Evol; 1998 May; 15(5):560-7. PubMed ID: 9580985 [TBL] [Abstract][Full Text] [Related]
54. Regeneration of ultraviolet pigments of vertebrates. Yokoyama S; Radlwimmer FB; Kawamura S FEBS Lett; 1998 Feb; 423(2):155-8. PubMed ID: 9512349 [TBL] [Abstract][Full Text] [Related]
55. Not all butterfly eyes are created equal: rhodopsin absorption spectra, molecular identification, and localization of ultraviolet-, blue-, and green-sensitive rhodopsin-encoding mRNAs in the retina of Vanessa cardui. Briscoe AD; Bernard GD; Szeto AS; Nagy LM; White RH J Comp Neurol; 2003 Apr; 458(4):334-49. PubMed ID: 12619069 [TBL] [Abstract][Full Text] [Related]
56. Primary structure of crayfish visual pigment deduced from cDNA. Hariyama T; Ozaki K; Tokunaga F; Tsukahara Y FEBS Lett; 1993 Jan; 315(3):287-92. PubMed ID: 8422920 [TBL] [Abstract][Full Text] [Related]
57. Adaptive evolution of color vision as seen through the eyes of butterflies. Frentiu FD; Bernard GD; Cuevas CI; Sison-Mangus MP; Prudic KL; Briscoe AD Proc Natl Acad Sci U S A; 2007 May; 104 Suppl 1(Suppl 1):8634-40. PubMed ID: 17494749 [TBL] [Abstract][Full Text] [Related]
58. Molecular evolution of trichromacy in primates. Hunt DM; Dulai KS; Cowing JA; Julliot C; Mollon JD; Bowmaker JK; Li WH; Hewett-Emmett D Vision Res; 1998 Nov; 38(21):3299-306. PubMed ID: 9893841 [TBL] [Abstract][Full Text] [Related]
59. Rod and cone opsin families differ in spectral tuning domains but not signal transducing domains as judged by saturated evolutionary trace analysis. Carleton KL; Spady TC; Cote RH J Mol Evol; 2005 Jul; 61(1):75-89. PubMed ID: 15988624 [TBL] [Abstract][Full Text] [Related]
60. Cloning and expression of goldfish opsin sequences. Johnson RL; Grant KB; Zankel TC; Boehm MF; Merbs SL; Nathans J; Nakanishi K Biochemistry; 1993 Jan; 32(1):208-14. PubMed ID: 8418840 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]