BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 10948274)

  • 1. Determining the relative rates of change for prokaryotic and eukaryotic proteins with anciently duplicated paralogs.
    Kollman JM; Doolittle RF
    J Mol Evol; 2000 Aug; 51(2):173-81. PubMed ID: 10948274
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The rooting of the universal tree of life is not reliable.
    Philippe H; Forterre P
    J Mol Evol; 1999 Oct; 49(4):509-23. PubMed ID: 10486008
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Root of the universal tree of life based on ancient aminoacyl-tRNA synthetase gene duplications.
    Brown JR; Doolittle WF
    Proc Natl Acad Sci U S A; 1995 Mar; 92(7):2441-5. PubMed ID: 7708661
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phylogenetic analysis of carbamoylphosphate synthetase genes: complex evolutionary history includes an internal duplication within a gene which can root the tree of life.
    Lawson FS; Charlebois RL; Dillon JA
    Mol Biol Evol; 1996 Sep; 13(7):970-7. PubMed ID: 8752005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ancestral paralogs and pseudoparalogs and their role in the emergence of the eukaryotic cell.
    Makarova KS; Wolf YI; Mekhedov SL; Mirkin BG; Koonin EV
    Nucleic Acids Res; 2005; 33(14):4626-38. PubMed ID: 16106042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The root of the universal tree of life inferred from anciently duplicated genes encoding components of the protein-targeting machinery.
    Gribaldo S; Cammarano P
    J Mol Evol; 1998 Nov; 47(5):508-16. PubMed ID: 9797401
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The evolutionary history of carbamoyltransferases: A complex set of paralogous genes was already present in the last universal common ancestor.
    Labedan B; Boyen A; Baetens M; Charlier D; Chen P; Cunin R; Durbeco V; Glansdorff N; Herve G; Legrain C; Liang Z; Purcarea C; Roovers M; Sanchez R; Toong TL; Van de Casteele M; van Vliet F; Xu Y; Zhang YF
    J Mol Evol; 1999 Oct; 49(4):461-73. PubMed ID: 10486004
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ancient gene duplications and the root(s) of the tree of life.
    Zhaxybayeva O; Lapierre P; Gogarten JP
    Protoplasma; 2005 Dec; 227(1):53-64. PubMed ID: 16389494
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Archaea sister group of Bacteria? Indications from tree reconstruction artifacts in ancient phylogenies.
    Brinkmann H; Philippe H
    Mol Biol Evol; 1999 Jun; 16(6):817-25. PubMed ID: 10368959
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quest for Ancestors of Eukaryal Cells Based on Phylogenetic Analyses of Aminoacyl-tRNA Synthetases.
    Furukawa R; Nakagawa M; Kuroyanagi T; Yokobori SI; Yamagishi A
    J Mol Evol; 2017 Jan; 84(1):51-66. PubMed ID: 27889804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The evolution of the conserved ATPase domain (CAD): reconstructing the history of an ancient protein module.
    Swaffield JC; Purugganan MD
    J Mol Evol; 1997 Nov; 45(5):549-63. PubMed ID: 9342402
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolutionary relationship of archaebacteria, eubacteria, and eukaryotes inferred from phylogenetic trees of duplicated genes.
    Iwabe N; Kuma K; Hasegawa M; Osawa S; Miyata T
    Proc Natl Acad Sci U S A; 1989 Dec; 86(23):9355-9. PubMed ID: 2531898
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An evaluation of elongation factor 1 alpha as a phylogenetic marker for eukaryotes.
    Roger AJ; Sandblom O; Doolittle WF; Philippe H
    Mol Biol Evol; 1999 Feb; 16(2):218-33. PubMed ID: 10028289
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular evolution: aminoacyl-tRNA synthetases on the loose.
    Weiner AM
    Curr Biol; 1999 Nov; 9(22):R842-4. PubMed ID: 10574753
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of lateral gene transfer events in the prokaryotic tRNA synthetases by the ratios of evolutionary distances method.
    Farahi K; Pusch GD; Overbeek R; Whitman WB
    J Mol Evol; 2004 May; 58(5):615-31. PubMed ID: 15170264
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nucleotide triplet based molecular phylogeny of class I and class II aminoacyl t-RNA synthetase in three domain of life process: bacteria, archaea, and eukarya.
    Mondal UK; Das B; Ghosh TC; Sen A; Bothra AK
    J Biomol Struct Dyn; 2008 Dec; 26(3):321-8. PubMed ID: 18808198
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The root of the universal tree and the origin of eukaryotes based on elongation factor phylogeny.
    Baldauf SL; Palmer JD; Doolittle WF
    Proc Natl Acad Sci U S A; 1996 Jul; 93(15):7749-54. PubMed ID: 8755547
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rate asymmetry after genome duplication causes substantial long-branch attraction artifacts in the phylogeny of Saccharomyces species.
    Fares MA; Byrne KP; Wolfe KH
    Mol Biol Evol; 2006 Feb; 23(2):245-53. PubMed ID: 16207937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modular evolution of the Glx-tRNA synthetase family--rooting of the evolutionary tree between the bacteria and archaea/eukarya branches.
    Siatecka M; Rozek M; Barciszewski J; Mirande M
    Eur J Biochem; 1998 Aug; 256(1):80-7. PubMed ID: 9746349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unusually high evolutionary rate of the elongation factor 1 alpha genes from the Ciliophora and its impact on the phylogeny of eukaryotes.
    Moreira D; Le Guyader H; Philippe H
    Mol Biol Evol; 1999 Feb; 16(2):234-45. PubMed ID: 10028290
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.