These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 10948523)

  • 1. Application of functional blocking antibodies. N-cadherin and chick embryonic limb development.
    Oberlender SA; Tuan RS
    Methods Mol Biol; 2000; 137():37-42. PubMed ID: 10948523
    [No Abstract]   [Full Text] [Related]  

  • 2. Embryonic limb mesenchyme micromass culture as an in vitro model for chondrogenesis and cartilage maturation.
    DeLise AM; Stringa E; Woodward WA; Mello MA; Tuan RS
    Methods Mol Biol; 2000; 137():359-75. PubMed ID: 10948551
    [No Abstract]   [Full Text] [Related]  

  • 3. Electroporation-mediated DNA transfection of embryonic chick limb mesenchymal cells.
    DeLise AM; Tuan RS
    Methods Mol Biol; 2000; 137():377-82. PubMed ID: 10948552
    [No Abstract]   [Full Text] [Related]  

  • 4. Alterations in the spatiotemporal expression pattern and function of N-cadherin inhibit cellular condensation and chondrogenesis of limb mesenchymal cells in vitro.
    DeLise AM; Tuan RS
    J Cell Biochem; 2002; 87(3):342-59. PubMed ID: 12397616
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved techniques for avian embryo culture, somite cell culture, and microsurgery.
    Packard DS; Cox C; Poole TJ
    Methods Mol Biol; 2000; 137():185-99. PubMed ID: 10948538
    [No Abstract]   [Full Text] [Related]  

  • 6. Analysis of N-cadherin function in limb mesenchymal chondrogenesis in vitro.
    Delise AM; Tuan RS
    Dev Dyn; 2002 Oct; 225(2):195-204. PubMed ID: 12242719
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gdf11 is a negative regulator of chondrogenesis and myogenesis in the developing chick limb.
    Gamer LW; Cox KA; Small C; Rosen V
    Dev Biol; 2001 Jan; 229(2):407-20. PubMed ID: 11203700
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasticity of proximal-distal cell fate in the mammalian limb bud.
    Wyngaarden LA; Hopyan S
    Dev Biol; 2008 Jan; 313(1):225-33. PubMed ID: 18053979
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential expression of the islet-1 homeodomain protein in the limb bud of the chick embryo.
    Shiga T; Inoue K; Masuda T
    Anat Embryol (Berl); 2002 Jun; 205(3):223-8. PubMed ID: 12107492
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of a novel population of human cord blood cells with hema-topoietic and chondrocytic potential.
    Jay KE; Rouleau A; Underhill TM; Bhatia M
    Cell Res; 2004 Aug; 14(4):268-82. PubMed ID: 15353124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Morphogenetic potential of leg bud mesoderm to express limb-like characteristics in vitro.
    Isokawa K; Krug EL; Fallon JF; Markwald RR
    Prog Clin Biol Res; 1993; 383A():351-60. PubMed ID: 8302908
    [No Abstract]   [Full Text] [Related]  

  • 12. Cell sorting out according to species in aggregates containing mouse and chick embryonic limb mesoblast cells.
    Burdick ML
    J Exp Zool; 1970 Nov; 175(3):357-67. PubMed ID: 5478939
    [No Abstract]   [Full Text] [Related]  

  • 13. In vitro production of monoclonal antibodies to cultured embryonic chick limb mesenchyme.
    Capehart AA
    Methods Cell Sci; 2000; 22(4):319-27. PubMed ID: 11549945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Btg1 and Btg2 gene expression during early chick development.
    Kamaid A; Giráldez F
    Dev Dyn; 2008 Aug; 237(8):2158-69. PubMed ID: 18651656
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Splanchnic (visceral) mesoderm has limb-forming ability according to the position along the rostrocaudal axis in chick embryos.
    Yonei-Tamura S; Ide H; Tamura K
    Dev Dyn; 2005 Jun; 233(2):256-65. PubMed ID: 15844095
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methods for manipulating the chick limb bud to study gene expression, tissue interactions, and patterning.
    Ros MA; Simandl BK; Clark AW; Fallon JF
    Methods Mol Biol; 2000; 137():245-66. PubMed ID: 10948543
    [No Abstract]   [Full Text] [Related]  

  • 17. Cell adhesiveness and affinity for limb pattern formation.
    Yajima H; Hara K; Ide H; Tamura K
    Int J Dev Biol; 2002; 46(7):897-904. PubMed ID: 12455627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Manifestation of the limb prepattern: limb development in the absence of sonic hedgehog function.
    Chiang C; Litingtung Y; Harris MP; Simandl BK; Li Y; Beachy PA; Fallon JF
    Dev Biol; 2001 Aug; 236(2):421-35. PubMed ID: 11476582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrin signaling and cell spreading alterations by rottlerin treatment of chick limb bud mesenchymal cells.
    Choi YA; Kim DK; Kang SS; Sonn JK; Jin EJ
    Biochimie; 2009 May; 91(5):624-31. PubMed ID: 19306958
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Retinoid signaling in vertebrate limb development.
    Thaller C; Eichele G
    Ann N Y Acad Sci; 1996 Jun; 785():1-11. PubMed ID: 8702114
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.