These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 10948543)

  • 1. Methods for manipulating the chick limb bud to study gene expression, tissue interactions, and patterning.
    Ros MA; Simandl BK; Clark AW; Fallon JF
    Methods Mol Biol; 2000; 137():245-66. PubMed ID: 10948543
    [No Abstract]   [Full Text] [Related]  

  • 2. Pattern formation in epithelial development: the vertebrate limb and feather bud spacing.
    Wolpert L
    Philos Trans R Soc Lond B Biol Sci; 1998 Jun; 353(1370):871-5. PubMed ID: 9684284
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Manifestation of the limb prepattern: limb development in the absence of sonic hedgehog function.
    Chiang C; Litingtung Y; Harris MP; Simandl BK; Li Y; Beachy PA; Fallon JF
    Dev Biol; 2001 Aug; 236(2):421-35. PubMed ID: 11476582
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engrailed-1 misexpression in chick embryos prevents apical ridge formation but preserves segregation of dorsal and ventral ectodermal compartments.
    Altabef M; Logan C; Tickle C; Lumsden A
    Dev Biol; 2000 Jun; 222(2):307-16. PubMed ID: 10837120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methods in avian embryology experimental and molecular manipulation of the embryonic chick limb.
    Niswander L
    Methods Cell Biol; 2008; 87():135-52. PubMed ID: 18485295
    [No Abstract]   [Full Text] [Related]  

  • 6. Gdf11 is a negative regulator of chondrogenesis and myogenesis in the developing chick limb.
    Gamer LW; Cox KA; Small C; Rosen V
    Dev Biol; 2001 Jan; 229(2):407-20. PubMed ID: 11203700
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modification of the zone of polarizing activity signal by trypsin.
    Stefanov EK; Ferrage JM; Parchim NF; Lee CE; Reginelli AD; Taché M; Anderson RA
    Dev Growth Differ; 2009 Feb; 51(2):123-33. PubMed ID: 19207183
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Congenic method in the chick limb buds by electroporation.
    Suzuki T; Ogura T
    Dev Growth Differ; 2008 Aug; 50(6):459-65. PubMed ID: 18638168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The contribution of chicken embryology to the understanding of vertebrate limb development.
    Tickle C
    Mech Dev; 2004 Sep; 121(9):1019-29. PubMed ID: 15296968
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of Wnt and Frizzled genes during chick limb bud development.
    Kengaku M; Twombly V; Tabin C
    Cold Spring Harb Symp Quant Biol; 1997; 62():421-9. PubMed ID: 9598377
    [No Abstract]   [Full Text] [Related]  

  • 11. Making progress with limb models.
    Duboule D
    Nature; 2002 Aug; 418(6897):492-3. PubMed ID: 12152063
    [No Abstract]   [Full Text] [Related]  

  • 12. Plasticity of proximal-distal cell fate in the mammalian limb bud.
    Wyngaarden LA; Hopyan S
    Dev Biol; 2008 Jan; 313(1):225-33. PubMed ID: 18053979
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular basis of vertebrate limb patterning.
    Tickle C
    Am J Med Genet; 2002 Oct; 112(3):250-5. PubMed ID: 12357468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Btg1 and Btg2 gene expression during early chick development.
    Kamaid A; Giráldez F
    Dev Dyn; 2008 Aug; 237(8):2158-69. PubMed ID: 18651656
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A re-examination of proximodistal patterning during vertebrate limb development.
    Dudley AT; Ros MA; Tabin CJ
    Nature; 2002 Aug; 418(6897):539-44. PubMed ID: 12152081
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Embryonic limb mesenchyme micromass culture as an in vitro model for chondrogenesis and cartilage maturation.
    DeLise AM; Stringa E; Woodward WA; Mello MA; Tuan RS
    Methods Mol Biol; 2000; 137():359-75. PubMed ID: 10948551
    [No Abstract]   [Full Text] [Related]  

  • 17. A SHH-independent regulation of Gli3 is a significant determinant of anteroposterior patterning of the limb bud.
    Hill P; Götz K; Rüther U
    Dev Biol; 2009 Apr; 328(2):506-16. PubMed ID: 19248778
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic expression of Krüppel-like factor 4 (Klf4), a target of transcription factor AP-2alpha during murine mid-embryogenesis.
    Ehlermann J; Pfisterer P; Schorle H
    Anat Rec A Discov Mol Cell Evol Biol; 2003 Aug; 273(2):677-80. PubMed ID: 12845703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Progressive mRNA decay establishes an mkp3 expression gradient in the chick limb bud.
    Pascoal S; Andrade RP; Bajanca F; Palmeirim I
    Biochem Biophys Res Commun; 2007 Jan; 352(1):153-7. PubMed ID: 17112470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Morphology and significance of programmed cell death in the developing limb bud of the vertebrate embryo.
    Hurle JM; Ros MA; Climent V; Garcia-Martinez V
    Microsc Res Tech; 1996 Jun; 34(3):236-46. PubMed ID: 8743411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.