These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 10949054)

  • 21. Combining multivariate voxel selection and support vector machines for mapping and classification of fMRI spatial patterns.
    De Martino F; Valente G; Staeren N; Ashburner J; Goebel R; Formisano E
    Neuroimage; 2008 Oct; 43(1):44-58. PubMed ID: 18672070
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spectral clustering of fMRI data within regions of interest: clarification of L-dopa effects in Parkinson's disease.
    Lee PW; Wang Z; Palmer SJ; McKeown MJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5235-8. PubMed ID: 18003188
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Unsupervised learning and mapping of active brain functional MRI signals based on hidden semi-Markov event sequence models.
    Faisan S; Thoraval L; Armspach JP; Metz-Lutz MN; Heitz F
    IEEE Trans Med Imaging; 2005 Feb; 24(2):263-76. PubMed ID: 15707252
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Novel Type-2 Fuzzy C-Means Clustering for Brain MR Image Segmentation.
    Mishro PK; Agrawal S; Panda R; Abraham A
    IEEE Trans Cybern; 2021 Aug; 51(8):3901-3912. PubMed ID: 32568716
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Functional magnetic resonance imaging activation detection: fuzzy cluster analysis in wavelet and multiwavelet domains.
    Jahanian H; Soltanian-Zadeh H; Hossein-Zadeh GA
    J Magn Reson Imaging; 2005 Sep; 22(3):381-9. PubMed ID: 16104010
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Iterative approach of dual regression with a sparse prior enhances the performance of independent component analysis for group functional magnetic resonance imaging (fMRI) data.
    Kim YH; Kim J; Lee JH
    Neuroimage; 2012 Dec; 63(4):1864-89. PubMed ID: 22939873
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Novel ROC-type method for testing the efficiency of multivariate statistical methods in fMRI.
    Nandy RR; Cordes D
    Magn Reson Med; 2003 Jun; 49(6):1152-62. PubMed ID: 12768594
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mapping informative clusters in a hierarchical [corrected] framework of FMRI multivariate analysis.
    Xu R; Zhen Z; Liu J
    PLoS One; 2010 Nov; 5(11):e15065. PubMed ID: 21152081
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improving reliability of subject-level resting-state fMRI parcellation with shrinkage estimators.
    Mejia AF; Nebel MB; Shou H; Crainiceanu CM; Pekar JJ; Mostofsky S; Caffo B; Lindquist MA
    Neuroimage; 2015 May; 112():14-29. PubMed ID: 25731998
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optimal Model-free Approach Based on MDL and CHL for Active Brain Identification in fMRI Data Analysis.
    Jaber HA; Çankaya I; Aljobouri HK; Koçak OM; Algin O
    Curr Med Imaging; 2021; 17(3):352-365. PubMed ID: 32748753
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Analysis of fMRI data using improved self-organizing mapping and spatio-temporal metric hierarchical clustering.
    Liao W; Chen H; Yang Q; Lei X
    IEEE Trans Med Imaging; 2008 Oct; 27(10):1472-83. PubMed ID: 18815099
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fuzzy ensemble clustering based on random projections for DNA microarray data analysis.
    Avogadri R; Valentini G
    Artif Intell Med; 2009; 45(2-3):173-83. PubMed ID: 18801650
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Iterative spatial fuzzy clustering for 3D brain magnetic resonance image supervoxel segmentation.
    Kong Y; Wu J; Yang G; Zuo Y; Chen Y; Shu H; Coatrieux JL
    J Neurosci Methods; 2019 Jan; 311():17-27. PubMed ID: 30315839
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Detecting network modules in fMRI time series: a weighted network analysis approach.
    Mumford JA; Horvath S; Oldham MC; Langfelder P; Geschwind DH; Poldrack RA
    Neuroimage; 2010 Oct; 52(4):1465-76. PubMed ID: 20553896
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Unsupervised approach data analysis based on fuzzy possibilistic clustering: application to medical image MRI.
    El Harchaoui NE; Ait Kerroum M; Hammouch A; Ouadou M; Aboutajdine D
    Comput Intell Neurosci; 2013; 2013():435497. PubMed ID: 24489535
    [TBL] [Abstract][Full Text] [Related]  

  • 36. On clustering fMRI time series.
    Goutte C; Toft P; Rostrup E; Nielsen F; Hansen LK
    Neuroimage; 1999 Mar; 9(3):298-310. PubMed ID: 10075900
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A parcellation scheme based on von Mises-Fisher distributions and Markov random fields for segmenting brain regions using resting-state fMRI.
    Ryali S; Chen T; Supekar K; Menon V
    Neuroimage; 2013 Jan; 65():83-96. PubMed ID: 23041530
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Unsupervised spatiotemporal analysis of fMRI data using graph-based visualizations of self-organizing maps.
    Katwal SB; Gore JC; Marois R; Rogers BP
    IEEE Trans Biomed Eng; 2013 Sep; 60(9):2472-83. PubMed ID: 23613020
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Assessing a signal model and identifying brain activity from fMRI data by a detrending-based fractal analysis.
    Hu J; Lee JM; Gao J; White KD; Crosson B
    Brain Struct Funct; 2008 Feb; 212(5):417-26. PubMed ID: 18193280
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cluster-based analysis of FMRI data.
    Heller R; Stanley D; Yekutieli D; Rubin N; Benjamini Y
    Neuroimage; 2006 Nov; 33(2):599-608. PubMed ID: 16952467
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.