BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 10949166)

  • 1. Sequence-dependent stability of intramolecular DNA triple helices.
    Leitner D; Weisz K
    J Biomol Struct Dyn; 2000 Jun; 17(6):993-1000. PubMed ID: 10949166
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of sequence-dependent cytosine protonation and methylation on DNA triplex stability.
    Leitner D; Schröder W; Weisz K
    Biochemistry; 2000 May; 39(19):5886-92. PubMed ID: 10801340
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of selective cytosine methylation and hydration on the conformations of DNA triple helices containing a TTTT loop structure by FT-IR spectroscopy.
    Fang Y; Bai C; Wei Y; Lin SB; Kan L
    J Biomol Struct Dyn; 1995 Dec; 13(3):471-82. PubMed ID: 8825727
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Presence of divalent cation is not mandatory for the formation of intramolecular purine-motif triplex containing human c-jun protooncogene target.
    Kaushik S; Kaushik M; Svinarchuk F; Malvy C; Fermandjian S; Kukreti S
    Biochemistry; 2011 May; 50(19):4132-42. PubMed ID: 21381700
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The contribution of cytosine protonation to the stability of parallel DNA triple helices.
    Asensio JL; Lane AN; Dhesi J; Bergqvist S; Brown T
    J Mol Biol; 1998 Feb; 275(5):811-22. PubMed ID: 9480771
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energetics of strand-displacement reactions in triple helices: a spectroscopic study.
    Mills M; Arimondo PB; Lacroix L; Garestier T; Hélène C; Klump H; Mergny JL
    J Mol Biol; 1999 Sep; 291(5):1035-54. PubMed ID: 10518941
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nuclear magnetic resonance structural studies of intramolecular purine.purine.pyrimidine DNA triplexes in solution. Base triple pairing alignments and strand direction.
    Radhakrishnan I; de los Santos C; Patel DJ
    J Mol Biol; 1991 Oct; 221(4):1403-18. PubMed ID: 1942059
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA complexes containing joined triplex and duplex motifs: melting behavior of intramolecular and bimolecular complexes with similar sequences.
    Lee HT; Khutsishvili I; Marky LA
    J Phys Chem B; 2010 Jan; 114(1):541-8. PubMed ID: 19928823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FTIR and UV spectroscopy studies of triplex formation between alpha-oligonucleotides with non-ionic phoshoramidate linkages and DNA targets.
    Michel T; Debart F; Vasseur JJ; Geinguenaud F; Taillandier E
    J Biomol Struct Dyn; 2003 Dec; 21(3):435-45. PubMed ID: 14616038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Linkage of proton binding to the thermal dissociation of triple helix complex.
    Petraccone L; Erra E; Mattia CA; Fedullo V; Barone G; Giancola C
    Biophys Chem; 2004 Jul; 110(1-2):73-81. PubMed ID: 15223145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of the third-strand orientation on the thermodynamic stability of the four-way DNA junction.
    Makube N; Klump HH
    Arch Biochem Biophys; 2001 Sep; 393(1):1-13. PubMed ID: 11516156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural heterogeneity in intramolecular DNA triple helices.
    Weisz K; Leitner D; Krafft C; Welfle H
    Biol Chem; 2000 Apr; 381(4):275-83. PubMed ID: 10839455
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Triple helical structures involving inosine: there is a penalty for promiscuity.
    Mills M; Völker J; Klump HH
    Biochemistry; 1996 Oct; 35(41):13338-44. PubMed ID: 8873600
    [TBL] [Abstract][Full Text] [Related]  

  • 14. pH and cation effects on the properties of parallel pyrimidine motif DNA triplexes.
    Sugimoto N; Wu P; Hara H; Kawamoto Y
    Biochemistry; 2001 Aug; 40(31):9396-405. PubMed ID: 11478909
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of pH-dependent properties of DNA triple helices.
    Hüsler PL; Klump HH
    Arch Biochem Biophys; 1995 Feb; 317(1):46-56. PubMed ID: 7872802
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inability of RNA to form the i-motif: implications for triplex formation.
    Lacroix L; Mergny JL; Leroy JL; Hélène C
    Biochemistry; 1996 Jul; 35(26):8715-22. PubMed ID: 8679634
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for a DNA triplex in a recombination-like motif: I. Recognition of Watson-Crick base pairs by natural bases in a high-stability triplex.
    Walter A; Schütz H; Simon H; Birch-Hirschfeld E
    J Mol Recognit; 2001; 14(2):122-39. PubMed ID: 11301482
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermodynamic properties of a conformationally constrained intramolecular DNA triple helix.
    Völker J; Osborne SE; Glick GD; Breslauer KJ
    Biochemistry; 1997 Jan; 36(4):756-67. PubMed ID: 9020773
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly stable DNA triplexes formed with cationic phosphoramidate pyrimidine alpha-oligonucleotides.
    Michel T; Debart F; Heitz F; Vasseur JJ
    Chembiochem; 2005 Jul; 6(7):1254-62. PubMed ID: 15912553
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unfolding thermodynamics of DNA intramolecular complexes involving joined triple- and double-helical motifs.
    Khutsishvili I; Johnson S; Lee HT; Marky LA
    Methods Enzymol; 2009; 466():477-502. PubMed ID: 21609873
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.