BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

852 related articles for article (PubMed ID: 10949580)

  • 1. The biology of cell locomotion within three-dimensional extracellular matrix.
    Friedl P; Bröcker EB
    Cell Mol Life Sci; 2000 Jan; 57(1):41-64. PubMed ID: 10949580
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cell migration strategies in 3-D extracellular matrix: differences in morphology, cell matrix interactions, and integrin function.
    Friedl P; Zänker KS; Bröcker EB
    Microsc Res Tech; 1998 Dec; 43(5):369-78. PubMed ID: 9858334
    [TBL] [Abstract][Full Text] [Related]  

  • 3. T cell migration in three-dimensional extracellular matrix: guidance by polarity and sensations.
    Friedl P; Bröcker EB
    Dev Immunol; 2000; 7(2-4):249-66. PubMed ID: 11097216
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Migration of highly aggressive MV3 melanoma cells in 3-dimensional collagen lattices results in local matrix reorganization and shedding of alpha2 and beta1 integrins and CD44.
    Friedl P; Maaser K; Klein CE; Niggemann B; Krohne G; Zänker KS
    Cancer Res; 1997 May; 57(10):2061-70. PubMed ID: 9158006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrins, cell matrix interactions and cell migration strategies: fundamental differences in leukocytes and tumor cells.
    Friedl P; Bröcker EB; Zänker KS
    Cell Adhes Commun; 1998; 6(2-3):225-36. PubMed ID: 9823473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CD4+ T lymphocytes migrating in three-dimensional collagen lattices lack focal adhesions and utilize beta1 integrin-independent strategies for polarization, interaction with collagen fibers and locomotion.
    Friedl P; Entschladen F; Conrad C; Niggemann B; Zänker KS
    Eur J Immunol; 1998 Aug; 28(8):2331-43. PubMed ID: 9710211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional hierarchy of simultaneously expressed adhesion receptors: integrin alpha2beta1 but not CD44 mediates MV3 melanoma cell migration and matrix reorganization within three-dimensional hyaluronan-containing collagen matrices.
    Maaser K; Wolf K; Klein CE; Niggemann B; Zänker KS; Bröcker EB; Friedl P
    Mol Biol Cell; 1999 Oct; 10(10):3067-79. PubMed ID: 10512851
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteolytic interstitial cell migration: a five-step process.
    Friedl P; Wolf K
    Cancer Metastasis Rev; 2009 Jun; 28(1-2):129-35. PubMed ID: 19153672
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Release of cell fragments by invading melanoma cells.
    Mayer C; Maaser K; Daryab N; Zänker KS; Bröcker EB; Friedl P
    Eur J Cell Biol; 2004 Dec; 83(11-12):709-15. PubMed ID: 15679115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The matrix environmental and cell mechanical properties regulate cell migration and contribute to the invasive phenotype of cancer cells.
    Mierke CT
    Rep Prog Phys; 2019 Jun; 82(6):064602. PubMed ID: 30947151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell adhesion and motility depend on nanoscale RGD clustering.
    Maheshwari G; Brown G; Lauffenburger DA; Wells A; Griffith LG
    J Cell Sci; 2000 May; 113 ( Pt 10)():1677-86. PubMed ID: 10769199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanotransduction of mesenchymal melanoma cell invasion into 3D collagen lattices: filopod-mediated extension-relaxation cycles and force anisotropy.
    Starke J; Maaser K; Wehrle-Haller B; Friedl P
    Exp Cell Res; 2013 Oct; 319(16):2424-33. PubMed ID: 23830878
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative mechanisms of cancer cell migration through 3D matrix and physiological microtracks.
    Carey SP; Rahman A; Kraning-Rush CM; Romero B; Somasegar S; Torre OM; Williams RM; Reinhart-King CA
    Am J Physiol Cell Physiol; 2015 Mar; 308(6):C436-47. PubMed ID: 25500742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis.
    Zaman MH; Trapani LM; Sieminski AL; Mackellar D; Gong H; Kamm RD; Wells A; Lauffenburger DA; Matsudaira P
    Proc Natl Acad Sci U S A; 2006 Jul; 103(29):10889-94. PubMed ID: 16832052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Local 3D matrix microenvironment regulates cell migration through spatiotemporal dynamics of contractility-dependent adhesions.
    Doyle AD; Carvajal N; Jin A; Matsumoto K; Yamada KM
    Nat Commun; 2015 Nov; 6():8720. PubMed ID: 26548801
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extracellular matrix and integrin signalling: the shape of things to come.
    Boudreau NJ; Jones PL
    Biochem J; 1999 May; 339 ( Pt 3)(Pt 3):481-8. PubMed ID: 10215583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physical and biochemical regulation of integrin release during rear detachment of migrating cells.
    Palecek SP; Huttenlocher A; Horwitz AF; Lauffenburger DA
    J Cell Sci; 1998 Apr; 111 ( Pt 7)():929-40. PubMed ID: 9490637
    [TBL] [Abstract][Full Text] [Related]  

  • 18. AMPA receptors promote perivascular glioma invasion via beta1 integrin-dependent adhesion to the extracellular matrix.
    Piao Y; Lu L; de Groot J
    Neuro Oncol; 2009 Jun; 11(3):260-73. PubMed ID: 18957620
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular mechanisms of cancer cell invasion and plasticity.
    Wolf K; Friedl P
    Br J Dermatol; 2006 May; 154 Suppl 1():11-5. PubMed ID: 16712711
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell-ECM Interactions in Tumor Invasion.
    He X; Lee B; Jiang Y
    Adv Exp Med Biol; 2016; 936():73-91. PubMed ID: 27739043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 43.