BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 10949689)

  • 21. Efficient co-displaying and artificial ratio control of α-amylase and glucoamylase on the yeast cell surface by using combinations of different anchoring domains.
    Inokuma K; Yoshida T; Ishii J; Hasunuma T; Kondo A
    Appl Microbiol Biotechnol; 2015 Feb; 99(4):1655-63. PubMed ID: 25432675
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Repeated fermentation from raw starch using Saccharomyces cerevisiae displaying both glucoamylase and α-amylase.
    Yamakawa S; Yamada R; Tanaka T; Ogino C; Kondo A
    Enzyme Microb Technol; 2012 May; 50(6-7):343-7. PubMed ID: 22500903
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Co-expression of a Saccharomyces diastaticus glucoamylase-encoding gene and a Bacillus amyloliquefaciens alpha-amylase-encoding gene in Saccharomyces cerevisiae.
    Steyn AJ; Pretorius IS
    Gene; 1991 Apr; 100():85-93. PubMed ID: 2055483
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A new promoter-probe vector for Saccharomyces cerevisiae using fungal glucoamylase cDNA as the reporter gene.
    Scorpione RC; De Camargo SS; Schenberg AC; Astolfi-Filho S
    Yeast; 1993 Jun; 9(6):599-605. PubMed ID: 8346676
    [TBL] [Abstract][Full Text] [Related]  

  • 25. MSS11, a novel yeast gene involved in the regulation of starch metabolism.
    Webber AL; Lambrechts MG; Pretorius IS
    Curr Genet; 1997 Oct; 32(4):260-6. PubMed ID: 9342405
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of transcription promoters on the optimal production of secreted protein in fed-batch reactors.
    Park S; Ramirez WF
    Biotechnol Prog; 1990; 6(5):311-8. PubMed ID: 1366871
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of upstream sequences of the ADH1 promoter on the expression of Hormoconis resinae glucoamylase P by Saccharomyces cerevisiae.
    Vainio AE
    FEMS Microbiol Lett; 1994 Aug; 121(2):229-35. PubMed ID: 7926675
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular genetic manipulation of Pichia pastoris SEC4 governs cell growth and glucoamylase secretion.
    Liu SH; Chou WI; Lin SC; Sheu CC; Chang MD
    Biochem Biophys Res Commun; 2005 Nov; 336(4):1172-80. PubMed ID: 16176807
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Heterologous gene expression in Hansenula polymorpha: efficient secretion of glucoamylase.
    Gellissen G; Janowicz ZA; Merckelbach A; Piontek M; Keup P; Weydemann U; Hollenberg CP; Strasser AW
    Biotechnology (N Y); 1991 Mar; 9(3):291-5. PubMed ID: 1367303
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cloning and expression of Hormoconis resinae glucoamylase P cDNA in Saccharomyces cerevisiae.
    Vainio AE; Torkkeli HT; Tuusa T; Aho SA; Fagerström BR; Korhola MP
    Curr Genet; 1993; 24(1-2):38-44. PubMed ID: 8358830
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Repeated-batch production of glucoamylase using recombinant Saccharomyces cerevisiae immobilized in a fibrous bed bioreactor.
    Kilonzo PM; Margaritis A; Bergougnou MA
    J Ind Microbiol Biotechnol; 2010 Aug; 37(8):773-83. PubMed ID: 20407916
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cloning and expression on a multicopy vector of five invertase genes of Saccharomyces cerevisiae.
    Hohmann S; Zimmermann FK
    Curr Genet; 1986; 11(3):217-25. PubMed ID: 2834091
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Overexpression and characterization of Aspergillus awamori wild-type and mutant glucoamylase secreted by the methylotrophic yeast Pichia pastoris: comparison with wild-type recombinant glucoamylase produced using Saccharomyces cerevisiae and Aspergillus niger as hosts.
    Fierobe HP; Mirgorodskaya E; Frandsen TP; Roepstorff P; Svensson B
    Protein Expr Purif; 1997 Mar; 9(2):159-70. PubMed ID: 9056481
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Construction of high sulphite-producing industrial strain of Saccharomyces cerevisiae].
    Qu N; He XP; Guo XN; Liu N; Zhang BR
    Wei Sheng Wu Xue Bao; 2006 Feb; 46(1):38-42. PubMed ID: 16579462
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of GAL10-SUC2 promoter combinations on SUC2 gene expression in S. cerevisiae.
    Feng B; Li YY; Chen ZC
    J Tongji Med Univ; 1993; 13(2):77-83. PubMed ID: 8230360
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The MF alpha 1 gene of Saccharomyces cerevisiae: genetic mapping and mutational analysis of promoter elements.
    Flessel MC; Brake AJ; Thorner J
    Genetics; 1989 Feb; 121(2):223-36. PubMed ID: 2659433
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inducible amplification of gene copy number and heterologous protein production in the yeast Kluyveromyces lactis.
    Morlino GB; Tizzani L; Fleer R; Frontali L; Bianchi MM
    Appl Environ Microbiol; 1999 Nov; 65(11):4808-13. PubMed ID: 10543790
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Production of the STA2-encoded glucoamylase in Saccharomyces cerevisiae is subject to feed-back control.
    Suntsov NI; Kuchin SV; Neystat MA; Mashko SV; Benevolensky SV
    Yeast; 1991 Feb; 7(2):119-25. PubMed ID: 2063624
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The naturally occurring silent invertase structural gene suc2 zero contains an amber stop codon that is occasionally read through.
    Gozalbo D; Hohmann S
    Mol Gen Genet; 1989 Apr; 216(2-3):511-6. PubMed ID: 2664460
    [TBL] [Abstract][Full Text] [Related]  

  • 40. FLO11, a yeast gene related to the STA genes, encodes a novel cell surface flocculin.
    Lo WS; Dranginis AM
    J Bacteriol; 1996 Dec; 178(24):7144-51. PubMed ID: 8955395
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.