BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 10949822)

  • 1. Preparation of DNA substrates for in vitro mismatch repair.
    Wang H; Hays JB
    Mol Biotechnol; 2000 Jun; 15(2):97-104. PubMed ID: 10949822
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of mismatch repair in human nuclear extracts.
    Wang H; Hays JB
    Curr Protoc Toxicol; 2006 Jun; Chapter 3():Unit3.10. PubMed ID: 23045132
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Construction and characterization of mismatch-containing circular DNA molecules competent for assessment of nick-directed human mismatch repair in vitro.
    Larson ED; Nickens D; Drummond JT
    Nucleic Acids Res; 2002 Feb; 30(3):E14. PubMed ID: 11809902
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mismatch repair in human nuclear extracts. Quantitative analyses of excision of nicked circular mismatched DNA substrates, constructed by a new technique employing synthetic oligonucleotides.
    Wang H; Hays JB
    J Biol Chem; 2002 Jul; 277(29):26136-42. PubMed ID: 12006560
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modified parallel strategies for preparation of heteroduplex plasmids for in vitro mismatch repair assays.
    Shimpi GG; Vargas S; Wörheide G
    Anal Biochem; 2018 Sep; 556():35-39. PubMed ID: 29940140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discrimination and versatility in mismatch repair.
    Hays JB; Hoffman PD; Wang H
    DNA Repair (Amst); 2005 Dec; 4(12):1463-74. PubMed ID: 16213799
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The large loop repair and mismatch repair pathways of Saccharomyces cerevisiae act on distinct substrates during meiosis.
    Jensen LE; Jauert PA; Kirkpatrick DT
    Genetics; 2005 Jul; 170(3):1033-43. PubMed ID: 15879514
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strand-specific mismatch correction in nuclear extracts of human and Drosophila melanogaster cell lines.
    Holmes J; Clark S; Modrich P
    Proc Natl Acad Sci U S A; 1990 Aug; 87(15):5837-41. PubMed ID: 2116007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rad51-mediated double-strand break repair and mismatch correction of divergent substrates.
    Anand R; Beach A; Li K; Haber J
    Nature; 2017 Apr; 544(7650):377-380. PubMed ID: 28405019
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Repair of heteroduplex plasmid DNA after transformation into Saccharomyces cerevisiae.
    Bishop DK; Kolodner RD
    Mol Cell Biol; 1986 Oct; 6(10):3401-9. PubMed ID: 3025591
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA mismatch repair in Xenopus egg extracts: repair efficiency and DNA repair synthesis for all single base-pair mismatches.
    Varlet I; Radman M; Brooks P
    Proc Natl Acad Sci U S A; 1990 Oct; 87(20):7883-7. PubMed ID: 2236005
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Construction of MMR plasmid substrates and analysis of MMR error correction and excision.
    Wang H; Hays JB
    Methods Mol Biol; 2006; 314():345-53. PubMed ID: 16673892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mismatch repair involving localized DNA synthesis in extracts of Xenopus eggs.
    Brooks P; Dohet C; Almouzni G; Méchali M; Radman M
    Proc Natl Acad Sci U S A; 1989 Jun; 86(12):4425-9. PubMed ID: 2734295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strand interruptions confer strand preference during intracellular correction of a plasmid-borne mismatch in Saccharomyces cerevisiae.
    Yang Y; Kang X; Kohalmi L; Karthikeyan R; Kunz BA
    Curr Genet; 1999 Jun; 35(5):499-505. PubMed ID: 10369956
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Double-strand cleavage at a two-base deletion mismatch in a DNA heteroduplex by nuclease S1.
    Burdon MG; Lees JH
    Biosci Rep; 1985 Aug; 5(8):627-32. PubMed ID: 2998501
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human DNA mismatch repair in vitro operates independently of methylation status at CpG sites.
    Drummond JT; Bellacosa A
    Nucleic Acids Res; 2001 Jun; 29(11):2234-43. PubMed ID: 11376141
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient repair of all types of single-base mismatches in recombination intermediates in Chinese hamster ovary cells. Competition between long-patch and G-T glycosylase-mediated repair of G-T mismatches.
    Bill CA; Duran WA; Miselis NR; Nickoloff JA
    Genetics; 1998 Aug; 149(4):1935-43. PubMed ID: 9691048
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large non-homology in heteroduplex DNA is processed differently than single base pair mismatches.
    Dohet C; Dzidić S; Wagner R; Radman M
    Mol Gen Genet; 1987 Jan; 206(1):181-4. PubMed ID: 3472034
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recognition of DNA alterations by the mismatch repair system.
    Marra G; Schär P
    Biochem J; 1999 Feb; 338 ( Pt 1)(Pt 1):1-13. PubMed ID: 9931291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human strand-specific mismatch repair occurs by a bidirectional mechanism similar to that of the bacterial reaction.
    Fang WH; Modrich P
    J Biol Chem; 1993 Jun; 268(16):11838-44. PubMed ID: 8505312
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.