These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 10950204)

  • 1. High strength bioresorbable bone plates: preparation, mechanical properties and in vitro analysis.
    Hasirci V; Lewandrowski KU; Bondre SP; Gresser JD; Trantolo DJ; Wise DL
    Biomed Mater Eng; 2000; 10(1):19-29. PubMed ID: 10950204
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Versatility of biodegradable biopolymers: degradability and an in vivo application.
    Hasirci V; Lewandrowski K; Gresser JD; Wise DL; Trantolo DJ
    J Biotechnol; 2001 Mar; 86(2):135-50. PubMed ID: 11245902
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PLGA bone plates reinforced with crosslinked PPF.
    Hasirci V; Litman AE; Trantolo DJ; Gresser JD; Wise DL; Margolis HC
    J Mater Sci Mater Med; 2002 Feb; 13(2):159-67. PubMed ID: 15348638
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of poly(propylene fumarate)-based orthopaedic implants by photo-crosslinking through transparent silicone molds.
    Timmer MD; Carter C; Ambrose CG; Mikos AG
    Biomaterials; 2003 Nov; 24(25):4707-14. PubMed ID: 12951014
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of an injectable, degradable polymer for mechanical stabilization of mandibular fractures.
    Henslee AM; Yoon DM; Lu BY; Yu J; Arango AA; Marruffo LP; Seng L; Anver TD; Ather H; Nair MB; Piper SO; Demian N; Wong ME; Kasper FK; Mikos AG
    J Biomed Mater Res B Appl Biomater; 2015 Apr; 103(3):529-38. PubMed ID: 24934595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioactive, mechanically favorable, and biodegradable copolymer nanocomposites for orthopedic applications.
    Victor SP; Muthu J
    Mater Sci Eng C Mater Biol Appl; 2014 Jun; 39():150-60. PubMed ID: 24863211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical properties of denture base resin cross-linked with methacrylated dendrimer.
    Kawaguchi T; Lassila LV; Vallittu PK; Takahashi Y
    Dent Mater; 2011 Aug; 27(8):755-61. PubMed ID: 21529924
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving the miscibility of biodegradable polyester/polyphosphazene blends using cross-linkable polyphosphazene.
    Shan D; Huang Z; Zhao Y; Cai Q; Yang X
    Biomed Mater; 2014 Nov; 9(6):061001. PubMed ID: 25426734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tissue responses to molecularly reinforced polylactide-co-glycolide implants.
    Lewandrowski KU; Gresser JD; Wise DL; Trantolo DJ; Hasirci V
    J Biomater Sci Polym Ed; 2000; 11(4):401-14. PubMed ID: 10903038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An experimental study of heat adaptation of bioabsorbable craniofacial meshes and plates.
    Pietrzak WS; Eppley BL
    J Craniofac Surg; 2007 May; 18(3):540-5. PubMed ID: 17538315
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro studies of composite bone filler based on poly(propylene fumarate) and biphasic α-tricalcium phosphate/hydroxyapatite ceramic powder.
    Wu CC; Yang KC; Yang SH; Lin MH; Kuo TF; Lin FH
    Artif Organs; 2012 Apr; 36(4):418-28. PubMed ID: 22145803
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro degradation of polymeric networks of poly(propylene fumarate) and the crosslinking macromer poly(propylene fumarate)-diacrylate.
    Timmer MD; Ambrose CG; Mikos AG
    Biomaterials; 2003 Feb; 24(4):571-7. PubMed ID: 12437951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of macromer molecular weight on in vitro ophthalmic drug release from photo-crosslinked matrices.
    Haesslein A; Hacker MC; Mikos AG
    Acta Biomater; 2008 Jan; 4(1):1-10. PubMed ID: 17938009
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crosslinking characteristics of an injectable poly(propylene fumarate)/beta-tricalcium phosphate paste and mechanical properties of the crosslinked composite for use as a biodegradable bone cement.
    Peter SJ; Kim P; Yasko AW; Yaszemski MJ; Mikos AG
    J Biomed Mater Res; 1999 Mar; 44(3):314-21. PubMed ID: 10397934
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies on poly(propylene fumarate-co-ethylene glycol) based bone cement.
    Jayabalan M; Thomas V; Sreelatha PK
    Biomed Mater Eng; 2000; 10(2):57-71. PubMed ID: 11086840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro degradation of porous poly(propylene fumarate)/poly(DL-lactic-co-glycolic acid) composite scaffolds.
    Hedberg EL; Shih CK; Lemoine JJ; Timmer MD; Liebschner MA; Jansen JA; Mikos AG
    Biomaterials; 2005 Jun; 26(16):3215-25. PubMed ID: 15603816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical strength and stiffness of biodegradable and titanium osteofixation systems.
    Buijs GJ; van der Houwen EB; Stegenga B; Bos RR; Verkerke GJ
    J Oral Maxillofac Surg; 2007 Nov; 65(11):2148-58. PubMed ID: 17954307
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of thermal- and photo-crosslinked biodegradable poly(propylene fumarate)-based networks.
    Timmer MD; Ambrose CG; Mikos AG
    J Biomed Mater Res A; 2003 Sep; 66(4):811-8. PubMed ID: 12926033
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Degradable, antibiotic releasing poly(propylene fumarate)-based constructs for craniofacial space maintenance applications.
    Henslee AM; Shah SR; Wong ME; Mikos AG; Kasper FK
    J Biomed Mater Res A; 2015 Apr; 103(4):1485-97. PubMed ID: 25046733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel micro-crosslinked poly(organophosphazenes) with improved mechanical properties and controllable degradation rate as potential biodegradable matrix.
    Cui Y; Zhao X; Tang X; Luo Y
    Biomaterials; 2004 Feb; 25(3):451-7. PubMed ID: 14585693
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.