BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

353 related articles for article (PubMed ID: 10951330)

  • 1. A model for type II collagen fibrils: distinctive D-band patterns in native and reconstituted fibrils compared with sequence data for helix and telopeptide domains.
    Ortolani F; Giordano M; Marchini M
    Biopolymers; 2000 Nov; 54(6):448-63. PubMed ID: 10951330
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heterotrimeric type I collagen C-telopeptide conformation as docked to its helix receptor.
    Malone JP; Veis A
    Biochemistry; 2004 Dec; 43(49):15358-66. PubMed ID: 15581348
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cartilage type II collagen fibrils show distinctive negative-staining band patterns differences between type II and type I unfixed or glutaraldehyde-fixed collagen fibrils.
    Ortolani F; Marchini M
    J Electron Microsc (Tokyo); 1995 Oct; 44(5):365-75. PubMed ID: 8568450
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Axial structure of the heterotypic collagen fibrils of vitreous humour and cartilage.
    Bos KJ; Holmes DF; Kadler KE; McLeod D; Morris NP; Bishop PN
    J Mol Biol; 2001 Mar; 306(5):1011-22. PubMed ID: 11237615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Type I collagen N-telopeptides adopt an ordered structure when docked to their helix receptor during fibrillogenesis.
    Malone JP; George A; Veis A
    Proteins; 2004 Feb; 54(2):206-15. PubMed ID: 14696182
    [TBL] [Abstract][Full Text] [Related]  

  • 6. "GA-banding": a new terminology and a study of the glutaraldehyde-induced band pattern of type I collagen fibrils.
    Ortolani F; Marchini M
    Boll Soc Ital Biol Sper; 1993 Jan; 69(1):49-55. PubMed ID: 8329191
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Negative staining and genesis of D-periodicity in native collagen fibrils.
    Ortolani F; Raspanti M; Marchini M
    Eur J Basic Appl Histochem; 1991; 35(1):45-60. PubMed ID: 1713789
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glutaraldehyde-induced D-band pattern of type II collagen fibrils as revealed by negative staining.
    Ortolani F; Marchini M
    Boll Soc Ital Biol Sper; 1993 Feb; 69(2):107-13. PubMed ID: 8129883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correlations between amino acid hydrophobicity scales and stain exclusion capacity of type 1 collagen fibrils.
    Ortolani F; Raspanti M; Marchini M
    J Electron Microsc (Tokyo); 1994 Feb; 43(1):32-8. PubMed ID: 11407414
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deposition of apatite in mineralizing vertebrate extracellular matrices: A model of possible nucleation sites on type I collagen.
    Silver FH; Landis WJ
    Connect Tissue Res; 2011 Jun; 52(3):242-54. PubMed ID: 21405976
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure of the type I collagen molecule based on conformational energy computations: the triple-stranded helix and the N-terminal telopeptide.
    Vitagliano L; NĂ©methy G; Zagari A; Scheraga HA
    J Mol Biol; 1995 Mar; 247(1):69-80. PubMed ID: 7897661
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correlation between amino acid composition and ultrastructural features of type I and type II native collagen fibrils.
    Ortolani F; Marchini M
    Boll Soc Ital Biol Sper; 1993 Feb; 69(2):99-106. PubMed ID: 8129891
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [A turning point in the knowledge of the structure-function-activity relations of elastin].
    Alix AJ
    J Soc Biol; 2001; 195(2):181-93. PubMed ID: 11727705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and assembly of the heterotrimeric and homotrimeric C-propeptides of type I collagen: significance of the alpha2(I) chain.
    Malone JP; Alvares K; Veis A
    Biochemistry; 2005 Nov; 44(46):15269-79. PubMed ID: 16285730
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformational analysis of the type II and type III collagen alpha-1 chain N-telopeptides by 1H-NMR spectroscopy and restrained molecular mechanics calculations.
    Otter A; Scott PG; Kotovych G
    Biopolymers; 1993 Sep; 33(9):1443-59. PubMed ID: 8400034
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Collagen-glutaraldehyde interaction as revealed by the D-banding of negatively stained fibrils and computer-drawn band patterns.
    Marchini M; Ortolani F; Raspanti M
    Eur J Histochem; 1993; 37(4):363-73. PubMed ID: 7510543
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The intact human acetylcholinesterase C-terminal oligomerization domain is alpha-helical in situ and in isolation, but a shorter fragment forms beta-sheet-rich amyloid fibrils and protofibrillar oligomers.
    Cottingham MG; Voskuil JL; Vaux DJ
    Biochemistry; 2003 Sep; 42(36):10863-73. PubMed ID: 12962511
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The folding mechanism of collagen-like model peptides explored through detailed molecular simulations.
    Stultz CM
    Protein Sci; 2006 Sep; 15(9):2166-77. PubMed ID: 16943446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fibril-associated collagens.
    van der Rest M; Dublet B; Champliaud MF
    Biomaterials; 1990 Jul; 11():28-31. PubMed ID: 2204435
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lysyl hydroxylase 2 is a specific telopeptide hydroxylase, while all three isoenzymes hydroxylate collagenous sequences.
    Takaluoma K; Lantto J; Myllyharju J
    Matrix Biol; 2007 Jun; 26(5):396-403. PubMed ID: 17289364
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.