These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 10951382)

  • 1. The behavior of stainless steels in physiological solution containing complexing agent studied by X-ray photoelectron spectroscopy.
    Milosev I; Strehblow HH
    J Biomed Mater Res; 2000 Nov; 52(2):404-12. PubMed ID: 10951382
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Corrosion characteristics of ferric and austenitic stainless steels for dental magnetic attachment.
    Endo K; Suzuki M; Ohno H
    Dent Mater J; 2000 Mar; 19(1):34-49. PubMed ID: 11219089
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An impedance study of two types of stainless steel in Ringer physiological solution containing complexing agents.
    Slemnik M; Milosev I
    J Mater Sci Mater Med; 2006 Oct; 17(10):911-8. PubMed ID: 16977388
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Austenitic and duplex stainless steels in simulated physiological solution characterized by electrochemical and X-ray photoelectron spectroscopy studies.
    Kocijan A; Conradi M; Schön PM
    J Biomed Mater Res B Appl Biomater; 2012 Apr; 100(3):799-807. PubMed ID: 22331841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of complexing agent and proteins on the corrosion of stainless steels and their metal components.
    Kocijan A; Milosev I; Pihlar B
    J Mater Sci Mater Med; 2003 Jan; 14(1):69-77. PubMed ID: 15348541
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cobalt-based alloys for orthopaedic applications studied by electrochemical and XPS analysis.
    Kocijan A; Milosev I; Pihlar B
    J Mater Sci Mater Med; 2004 Jun; 15(6):643-50. PubMed ID: 15346730
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influences of passivating elements on the corrosion and biocompatibility of super stainless steels.
    Yoo YR; Jang SG; Oh KT; Kim JG; Kim YS
    J Biomed Mater Res B Appl Biomater; 2008 Aug; 86(2):310-20. PubMed ID: 18161790
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal release rate from AISI 316L stainless steel and pure Fe, Cr and Ni into a synthetic biological medium--a comparison.
    Herting G; Wallinder IO; Leygraf C
    J Environ Monit; 2008 Sep; 10(9):1092-8. PubMed ID: 18728903
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of bovine serum albumin and lysozyme with stainless steel studied by time-of-flight secondary ion mass spectrometry and X-ray photoelectron spectroscopy.
    Hedberg YS; Killian MS; Blomberg E; Virtanen S; Schmuki P; Odnevall Wallinder I
    Langmuir; 2012 Nov; 28(47):16306-17. PubMed ID: 23116183
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemical characterization of AISI 316L stainless steel in contact with simulated body fluid under infection conditions.
    López DA; Durán A; Ceré SM
    J Mater Sci Mater Med; 2008 May; 19(5):2137-44. PubMed ID: 17999036
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Corrosion-induced release of the main alloying constituents of manganese-chromium stainless steels in different media.
    Herting G; Wallinder IO; Leygraf C
    J Environ Monit; 2008 Sep; 10(9):1084-91. PubMed ID: 18728902
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Corrosion behavior of 2205 duplex stainless steel.
    Platt JA; Guzman A; Zuccari A; Thornburg DW; Rhodes BF; Oshida Y; Moore BK
    Am J Orthod Dentofacial Orthop; 1997 Jul; 112(1):69-79. PubMed ID: 9228844
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A study of bacteria adhesion and microbial corrosion on different stainless steels in environment containing
    Tran TTT; Kannoorpatti K; Padovan A; Thennadil S
    R Soc Open Sci; 2021 Jan; 8(1):201577. PubMed ID: 33614090
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antibacterial durability and biocompatibility of antibacterial-passivated 316L stainless steel in simulated physiological environment.
    Zhao J; Zhai Z; Sun D; Yang C; Zhang X; Huang N; Jiang X; Yang K
    Mater Sci Eng C Mater Biol Appl; 2019 Jul; 100():396-410. PubMed ID: 30948076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Passive film on orthopaedic TiAlV alloy formed in physiological solution investigated by X-ray photoelectron spectroscopy.
    Milosev I; Metikos-Huković M; Strehblow HH
    Biomaterials; 2000 Oct; 21(20):2103-13. PubMed ID: 10966021
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro corrosion resistance of plasma source ion nitrided austenitic stainless steels.
    Le MK; Zhu XM
    Biomaterials; 2001 Apr; 22(7):641-7. PubMed ID: 11246957
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Duplex stainless steels for osteosynthesis devices.
    Cigada A; Rondelli G; Vicentini B; Giacomazzi M; Roos A
    J Biomed Mater Res; 1989 Sep; 23(9):1087-95. PubMed ID: 2777835
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancement of biocompatibility of 316LVM stainless steel by cyclic potentiodynamic passivation.
    Shahryari A; Omanovic S; Szpunar JA
    J Biomed Mater Res A; 2009 Jun; 89(4):1049-62. PubMed ID: 18478556
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correlation between surface physicochemical properties and the release of iron from stainless steel AISI 304 in biological media.
    Hedberg Y; Karlsson ME; Blomberg E; Odnevall Wallinder I; Hedberg J
    Colloids Surf B Biointerfaces; 2014 Oct; 122():216-222. PubMed ID: 25048358
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of molybdenum on the composition and nanoscale morphology of passivated austenitic stainless steel surfaces.
    Maurice V; Peng H; Klein LH; Seyeux A; Zanna S; Marcus P
    Faraday Discuss; 2015; 180():151-70. PubMed ID: 25898180
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.