BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 10951385)

  • 1. Synthetic nano-fibrillar extracellular matrices with predesigned macroporous architectures.
    Zhang R; Ma PX
    J Biomed Mater Res; 2000 Nov; 52(2):430-8. PubMed ID: 10951385
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nano-fibrous poly(L-lactic acid) scaffolds with interconnected spherical macropores.
    Chen VJ; Ma PX
    Biomaterials; 2004 May; 25(11):2065-73. PubMed ID: 14741621
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthetic nano-scale fibrous extracellular matrix.
    Ma PX; Zhang R
    J Biomed Mater Res; 1999 Jul; 46(1):60-72. PubMed ID: 10357136
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microtubular architecture of biodegradable polymer scaffolds.
    Ma PX; Zhang R
    J Biomed Mater Res; 2001 Sep; 56(4):469-77. PubMed ID: 11400124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nano-fibrous scaffolding architecture selectively enhances protein adsorption contributing to cell attachment.
    Woo KM; Chen VJ; Ma PX
    J Biomed Mater Res A; 2003 Nov; 67(2):531-7. PubMed ID: 14566795
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of biocompatible synthetic extracellular matrices for tissue engineering.
    Kim BS; Mooney DJ
    Trends Biotechnol; 1998 May; 16(5):224-30. PubMed ID: 9621462
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nano-fibrous scaffolds for tissue engineering.
    Smith LA; Ma PX
    Colloids Surf B Biointerfaces; 2004 Dec; 39(3):125-31. PubMed ID: 15556341
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Porogen-induced surface modification of nano-fibrous poly(L-lactic acid) scaffolds for tissue engineering.
    Liu X; Won Y; Ma PX
    Biomaterials; 2006 Jul; 27(21):3980-7. PubMed ID: 16580063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of nano-fibrous poly(L-lactic acid) scaffold reinforced by surface modified chitosan micro-fiber.
    Lou T; Wang X; Song G
    Int J Biol Macromol; 2013 Oct; 61():353-8. PubMed ID: 23928011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Homogeneous chitosan-PLGA composite fibrous scaffolds for tissue regeneration.
    Shim IK; Lee SY; Park YJ; Lee MC; Lee SH; Lee JY; Lee SJ
    J Biomed Mater Res A; 2008 Jan; 84(1):247-55. PubMed ID: 17607738
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fibrous scaffolds fabricated by emulsion electrospinning: from hosting capacity to in vivo biocompatibility.
    Spano F; Quarta A; Martelli C; Ottobrini L; Rossi RM; Gigli G; Blasi L
    Nanoscale; 2016 Apr; 8(17):9293-303. PubMed ID: 27088757
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel fabrication method of macroporous biodegradable polymer scaffolds using gas foaming salt as a porogen additive.
    Nam YS; Yoon JJ; Park TG
    J Biomed Mater Res; 2000; 53(1):1-7. PubMed ID: 10634946
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nano-fibrous scaffolding promotes osteoblast differentiation and biomineralization.
    Woo KM; Jun JH; Chen VJ; Seo J; Baek JH; Ryoo HM; Kim GS; Somerman MJ; Ma PX
    Biomaterials; 2007 Jan; 28(2):335-43. PubMed ID: 16854461
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel nanostructured biodegradable polymer matrices fabricated by phase separation techniques for tissue regeneration.
    Hsu SH; Huang S; Wang YC; Kuo YC
    Acta Biomater; 2013 Jun; 9(6):6915-27. PubMed ID: 23416581
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Statistical model for the mechanical behavior of the tissue engineering non-woven fibrous matrices under large deformation.
    Rizvi MS; Pal A
    J Mech Behav Biomed Mater; 2014 Sep; 37():235-50. PubMed ID: 24956158
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From supramolecular polymers to multi-component biomaterials.
    Goor OJGM; Hendrikse SIS; Dankers PYW; Meijer EW
    Chem Soc Rev; 2017 Oct; 46(21):6621-6637. PubMed ID: 28991958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering smooth muscle tissue with a predefined structure.
    Kim BS; Mooney DJ
    J Biomed Mater Res; 1998 Aug; 41(2):322-32. PubMed ID: 9638538
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthetic biodegradable functional polymers for tissue engineering: a brief review.
    BaoLin G; Ma PX
    Sci China Chem; 2014 Apr; 57(4):490-500. PubMed ID: 25729390
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functionalized synthetic biodegradable polymer scaffolds for tissue engineering.
    Liu X; Holzwarth JM; Ma PX
    Macromol Biosci; 2012 Jul; 12(7):911-9. PubMed ID: 22396193
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adhesion between biodegradable polymers and hydroxyapatite: Relevance to synthetic bone-like materials and tissue engineering scaffolds.
    Neuendorf RE; Saiz E; Tomsia AP; Ritchie RO
    Acta Biomater; 2008 Sep; 4(5):1288-96. PubMed ID: 18485842
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.