BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 10951715)

  • 21. X-ray quantitative computed tomography: the relations to physical properties of proximal tibial trabecular bone specimens.
    Hvid I; Bentzen SM; Linde F; Mosekilde L; Pongsoipetch B
    J Biomech; 1989; 22(8-9):837-44. PubMed ID: 2613719
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In vivo assessment of architecture and micro-finite element analysis derived indices of mechanical properties of trabecular bone in the radius.
    Newitt DC; Majumdar S; van Rietbergen B; von Ingersleben G; Harris ST; Genant HK; Chesnut C; Garnero P; MacDonald B
    Osteoporos Int; 2002 Jan; 13(1):6-17. PubMed ID: 11878456
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Differences between the tensile and compressive strengths of bovine tibial trabecular bone depend on modulus.
    Keaveny TM; Wachtel EF; Ford CM; Hayes WC
    J Biomech; 1994 Sep; 27(9):1137-46. PubMed ID: 7929463
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The dependence of shear failure properties of trabecular bone on apparent density and trabecular orientation.
    Ford CM; Keaveny TM
    J Biomech; 1996 Oct; 29(10):1309-17. PubMed ID: 8884476
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Yield strain behavior of trabecular bone.
    Kopperdahl DL; Keaveny TM
    J Biomech; 1998 Jul; 31(7):601-8. PubMed ID: 9796682
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effects of bone remodeling inhibition by alendronate on three-dimensional microarchitecture of subchondral bone tissues in guinea pig primary osteoarthrosis.
    Ding M; Danielsen CC; Hvid I
    Calcif Tissue Int; 2008 Jan; 82(1):77-86. PubMed ID: 18175032
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Importance of material properties and porosity of bone on mechanical response of articular cartilage in human knee joint--a two-dimensional finite element study.
    Venäläinen MS; Mononen ME; Jurvelin JS; Töyräs J; Virén T; Korhonen RK
    J Biomech Eng; 2014 Dec; 136(12):121005. PubMed ID: 25322202
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Apparent- and Tissue-Level Yield Behaviors of L4 Vertebral Trabecular Bone and Their Associations with Microarchitectures.
    Gong H; Wang L; Fan Y; Zhang M; Qin L
    Ann Biomed Eng; 2016 Apr; 44(4):1204-23. PubMed ID: 26104807
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mutual associations among microstructural, physical and mechanical properties of human cancellous bone.
    Ding M; Odgaard A; Danielsen CC; Hvid I
    J Bone Joint Surg Br; 2002 Aug; 84(6):900-7. PubMed ID: 12211688
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Morphometric analysis of subchondral bone of the tibial condyle in osteoarthrosis.
    Shimizu M; Tsuji H; Matsui H; Katoh Y; Sano A
    Clin Orthop Relat Res; 1993 Aug; (293):229-39. PubMed ID: 8339486
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Individual and combined effects of OA-related subchondral bone alterations on proximal tibial surface stiffness: a parametric finite element modeling study.
    Amini M; Nazemi SM; Lanovaz JL; Kontulainen S; Masri BA; Wilson DR; Szyszkowski W; Johnston JD
    Med Eng Phys; 2015 Aug; 37(8):783-91. PubMed ID: 26074327
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of short-term alendronate treatment on the three-dimensional microstructural, physical, and mechanical properties of dog trabecular bone.
    Hu JH; Ding M; Søballe K; Bechtold JE; Danielsen CC; Day JS; Hvid I
    Bone; 2002 Nov; 31(5):591-7. PubMed ID: 12477573
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Trabecular microstructure in the medial condyle of the proximal tibia of patients with knee osteoarthritis.
    Kamibayashi L; Wyss UP; Cooke TD; Zee B
    Bone; 1995 Jul; 17(1):27-35. PubMed ID: 7577155
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Subchondral bone of the human knee joint in aging and osteoarthritis.
    Yamada K; Healey R; Amiel D; Lotz M; Coutts R
    Osteoarthritis Cartilage; 2002 May; 10(5):360-9. PubMed ID: 12027537
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Three-dimensional morphometric properties of rod- and plate-like trabeculae in adolescent cancellous bone.
    Ding M; Lin X; Liu W
    J Orthop Translat; 2018 Jan; 12():26-35. PubMed ID: 29662776
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Zonal and directional variations in tensile properties of bovine articular cartilage with special reference to strain rate variation.
    Verteramo A; Seedhom BB
    Biorheology; 2004; 41(3-4):203-13. PubMed ID: 15299253
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biomechanical, structural, and biochemical indices of degenerative and osteoarthritic deterioration of adult human articular cartilage of the femoral condyle.
    Temple-Wong MM; Bae WC; Chen MQ; Bugbee WD; Amiel D; Coutts RD; Lotz M; Sah RL
    Osteoarthritis Cartilage; 2009 Nov; 17(11):1469-76. PubMed ID: 19464244
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Age-related three-dimensional microarchitectural adaptations of subchondral bone tissues in guinea pig primary osteoarthrosis.
    Ding M; Danielsen CC; Hvid I
    Calcif Tissue Int; 2006 Feb; 78(2):113-22. PubMed ID: 16397735
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantification of age-related changes in the structure model type and trabecular thickness of human tibial cancellous bone.
    Ding M; Hvid I
    Bone; 2000 Mar; 26(3):291-5. PubMed ID: 10710004
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of hyaluronan on three-dimensional microarchitecture of subchondral bone tissues in guinea pig primary osteoarthrosis.
    Ding M; Christian Danielsen C; Hvid I
    Bone; 2005 Mar; 36(3):489-501. PubMed ID: 15777671
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.