BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 10952002)

  • 1. Growth of Steptomyces hygroscopicus in rotating-wall bioreactor under simulated microgravity inhibits rapamycin production.
    Fang A; Pierson DL; Mishra SK; Demain AL
    Appl Microbiol Biotechnol; 2000 Jul; 54(1):33-6. PubMed ID: 10952002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Secondary metabolism in simulated microgravity.
    Demain AL; Fang A
    Chem Rec; 2001; 1(4):333-46. PubMed ID: 11893073
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Secondary metabolism in simulated microgravity: beta-lactam production by Streptomyces clavuligerus.
    Fang A; Pierson DL; Mishra SK; Koenig DW; Demain AL
    J Ind Microbiol Biotechnol; 1997 Jan; 18(1):22-5. PubMed ID: 9079284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shear stress enhances microcin B17 production in a rotating wall bioreactor, but ethanol stress does not.
    Gao Q; Fang A; Pierson DL; Mishra SK; Demain AL
    Appl Microbiol Biotechnol; 2001 Aug; 56(3-4):384-7. PubMed ID: 11549006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of dissolved oxygen level on rapamycin production by pellet-form of Streptomyces hygroscopicus.
    Yen HW; Hsiao HP
    J Biosci Bioeng; 2013 Sep; 116(3):366-70. PubMed ID: 23623896
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Erythroid cell growth and differentiation in vitro in the simulated microgravity environment of the NASA rotating wall vessel bioreactor.
    Sytkowski AJ; Davis KL
    In Vitro Cell Dev Biol Anim; 2001 Feb; 37(2):79-83. PubMed ID: 11332741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of simulated microgravity and shear stress on microcin B17 production by Escherichia coli and on its excretion into the medium.
    Fang A; Pierson DL; Koenig DW; Mishra SK; Demain AL
    Appl Environ Microbiol; 1997 Oct; 63(10):4090-2. PubMed ID: 9327574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production of rapamycin in Streptomyces hygroscopicus from glycerol-based media optimized by systemic methodology.
    Kim YH; Park BS; Bhatia SK; Seo HM; Jeon JM; Kim HJ; Yi DH; Lee JH; Choi KY; Park HY; Kim YG; Yang YH
    J Microbiol Biotechnol; 2014 Oct; 24(10):1319-26. PubMed ID: 25001557
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gramicidin S production by Bacillus brevis in simulated microgravity.
    Fang A; Pierson DL; Mishra SK; Koenig DW; Demain AL
    Curr Microbiol; 1997 Apr; 34(4):199-204. PubMed ID: 9058537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the osteoblast-like cell phenotype under microgravity conditions in the NASA-approved Rotating Wall Vessel bioreactor (RWV).
    Rucci N; Migliaccio S; Zani BM; Taranta A; Teti A
    J Cell Biochem; 2002; 85(1):167-79. PubMed ID: 11891860
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insights into the metabolic mechanism of rapamycin overproduction in the shikimate-resistant Streptomyces hygroscopicus strain UV-II using comparative metabolomics.
    Geng H; Liu H; Liu J; Wang C; Wen J
    World J Microbiol Biotechnol; 2017 Jun; 33(6):101. PubMed ID: 28466297
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studies on process optimization methods for rapamycin production using Streptomyces hygroscopicus ATCC 29253.
    Sinha R; Singh S; Srivastava P
    Bioprocess Biosyst Eng; 2014 May; 37(5):829-40. PubMed ID: 24048754
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon source nutrition of rapamycin biosynthesis in Streptomyces hygroscopicus.
    Kojima I; Cheng YR; Mohan V; Demain AL
    J Ind Microbiol; 1995 Jun; 14(6):436-9. PubMed ID: 7662284
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of simulated microgravity on bacteria from the Mir space station.
    Baker PW; Leff L
    Microgravity Sci Technol; 2004; 15(1):35-41. PubMed ID: 15773020
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface transformation of bioactive glass in bioreactors simulating microgravity conditions. Part II: numerical simulations.
    Gao H; Ayyaswamy PS; Ducheyne P; Radin S
    Biotechnol Bioeng; 2001 Nov; 75(3):379-85. PubMed ID: 11590611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of amino acids on rapamycin biosynthesis by Streptomyces hygroscopicus.
    Cheng YR; Fang A; Demain AL
    Appl Microbiol Biotechnol; 1995 Nov; 43(6):1096-8. PubMed ID: 8590661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative metabolic profiling-based improvement of rapamycin production by Streptomyces hygroscopicus.
    Zhao S; Huang D; Qi H; Wen J; Jia X
    Appl Microbiol Biotechnol; 2013 Jun; 97(12):5329-41. PubMed ID: 23604534
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production of novel rapamycin analogs by precursor-directed biosynthesis.
    Ritacco FV; Graziani EI; Summers MY; Zabriskie TM; Yu K; Bernan VS; Carter GT; Greenstein M
    Appl Environ Microbiol; 2005 Apr; 71(4):1971-6. PubMed ID: 15812028
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RWPV bioreactor mass transport: earth-based and in microgravity.
    Begley CM; Kleis SJ
    Biotechnol Bioeng; 2002 Nov; 80(4):465-76. PubMed ID: 12325155
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discontinuous pore fluid distribution under microgravity--KC-135 flight investigations.
    Reddi LN; Xiao M; Steinberg SL
    Soil Sci Soc Am J; 2005; 69(3):593-8. PubMed ID: 16052743
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.