BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 10952608)

  • 1. Identification of a plasmid-borne chloramphenicol-florfenicol resistance gene in Staphylococcus sciuri.
    Schwarz S; Werckenthin C; Kehrenberg C
    Antimicrob Agents Chemother; 2000 Sep; 44(9):2530-3. PubMed ID: 10952608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distribution of florfenicol resistance genes fexA and cfr among chloramphenicol-resistant Staphylococcus isolates.
    Kehrenberg C; Schwarz S
    Antimicrob Agents Chemother; 2006 Apr; 50(4):1156-63. PubMed ID: 16569824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efflux-mediated resistance to florfenicol and/or chloramphenicol in Bordetella bronchiseptica: identification of a novel chloramphenicol exporter.
    Kadlec K; Kehrenberg C; Schwarz S
    J Antimicrob Chemother; 2007 Feb; 59(2):191-6. PubMed ID: 17224413
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new mechanism for chloramphenicol, florfenicol and clindamycin resistance: methylation of 23S ribosomal RNA at A2503.
    Kehrenberg C; Schwarz S; Jacobsen L; Hansen LH; Vester B
    Mol Microbiol; 2005 Aug; 57(4):1064-73. PubMed ID: 16091044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distribution of optrA and cfr in florfenicol-resistant Staphylococcus sciuri of pig origin.
    Fan R; Li D; Feßler AT; Wu C; Schwarz S; Wang Y
    Vet Microbiol; 2017 Oct; 210():43-48. PubMed ID: 29103695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. fexA, a novel Staphylococcus lentus gene encoding resistance to florfenicol and chloramphenicol.
    Kehrenberg C; Schwarz S
    Antimicrob Agents Chemother; 2004 Feb; 48(2):615-8. PubMed ID: 14742219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmid-borne florfenicol resistance in Pasteurella multocida.
    Kehrenberg C; Schwarz S
    J Antimicrob Chemother; 2005 May; 55(5):773-5. PubMed ID: 15814600
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution of chloramphenicol resistance, with emergence of cross-resistance to florfenicol, in bovine Salmonella Typhimurium strains implicates definitive phage type (DT) 104.
    Arcangioli MA; Leroy-Setrin S; Martel JL; Chaslus-Dancla E
    J Med Microbiol; 2000 Jan; 49(1):103-110. PubMed ID: 10628832
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonenzymatic chloramphenicol resistance mediated by IncC plasmid R55 is encoded by a floR gene variant.
    Cloeckaert A; Baucheron S; Chaslus-Dancla E
    Antimicrob Agents Chemother; 2001 Aug; 45(8):2381-2. PubMed ID: 11451703
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new chloramphenicol and florfenicol resistance gene flanked by two integron structures in Salmonella typhimurium DT104.
    Arcangioli MA; Leroy-Sétrin S; Martel JL; Chaslus-Dancla E
    FEMS Microbiol Lett; 1999 May; 174(2):327-32. PubMed ID: 10339826
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Florfenicol-chloramphenicol exporter gene fexA is part of the novel transposon Tn558.
    Kehrenberg C; Schwarz S
    Antimicrob Agents Chemother; 2005 Feb; 49(2):813-5. PubMed ID: 15673776
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A chloramphenicol-streptomycin-resistance plasmid from a clinical strain of Staphylococcus sciuri and its structural relationships to other staphylococcal resistance plasmids.
    Schwarz S; Grölz-Krug S
    FEMS Microbiol Lett; 1991 Aug; 66(3):319-22. PubMed ID: 1769526
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular basis of bacterial resistance to chloramphenicol and florfenicol.
    Schwarz S; Kehrenberg C; Doublet B; Cloeckaert A
    FEMS Microbiol Rev; 2004 Nov; 28(5):519-42. PubMed ID: 15539072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel fexA variant from a canine Staphylococcus pseudintermedius isolate that does not confer florfenicol resistance.
    Gómez-Sanz E; Kadlec K; Feßler AT; Zarazaga M; Torres C; Schwarz S
    Antimicrob Agents Chemother; 2013 Nov; 57(11):5763-6. PubMed ID: 23979755
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of a novel chloramphenicol resistance plasmid from "equine" Staphylococcus sciuri.
    Schwarz S; Cardoso M; Blobel H
    Zentralbl Veterinarmed B; 1990 Nov; 37(9):674-9. PubMed ID: 2267890
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Co-location of the oxazolidinone resistance genes optrA and cfr on a multiresistance plasmid from Staphylococcus sciuri.
    Li D; Wang Y; Schwarz S; Cai J; Fan R; Li J; Feßler AT; Zhang R; Wu C; Shen J
    J Antimicrob Chemother; 2016 Jun; 71(6):1474-8. PubMed ID: 26953332
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of florfenicol resistance genes in Riemerella anatipestifer isolated from ducks and geese.
    Chen YP; Lee SH; Chou CH; Tsai HJ
    Vet Microbiol; 2012 Jan; 154(3-4):325-31. PubMed ID: 21820820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of chloramphenicol and florfenicol resistance in Escherichia coli associated with bovine diarrhea.
    White DG; Hudson C; Maurer JJ; Ayers S; Zhao S; Lee MD; Bolton L; Foley T; Sherwood J
    J Clin Microbiol; 2000 Dec; 38(12):4593-8. PubMed ID: 11101601
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nucleotide sequence and organization of the multiresistance plasmid pSCFS1 from Staphylococcus sciuri.
    Kehrenberg C; Ojo KK; Schwarz S
    J Antimicrob Chemother; 2004 Nov; 54(5):936-9. PubMed ID: 15471995
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and putative origin of a plasmid from Staphylococcus hyicus that mediates chloramphenicol and streptomycin resistance.
    Schwarz S; Noble WC
    Lett Appl Microbiol; 1994 May; 18(5):281-4. PubMed ID: 7764811
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.