BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 10952969)

  • 21. Role of hydration in the closed-to-open transition involved in Ca2+ binding by troponin C.
    Suarez MC; Machado CJ; Lima LM; Smillie LB; Pearlstone JR; Silva JL; Sorenson MM; Foguel D
    Biochemistry; 2003 May; 42(18):5522-30. PubMed ID: 12731895
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of length on force and activation-dependent changes in troponin c structure in skinned cardiac and fast skeletal muscle.
    Martyn DA; Gordon AM
    Biophys J; 2001 Jun; 80(6):2798-808. PubMed ID: 11371454
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Calcium- and magnesium-dependent interactions between the C-terminus of troponin I and the N-terminal, regulatory domain of troponin C.
    Digel J; Abugo O; Kobayashi T; Gryczynski Z; Lakowicz JR; Collins JH
    Arch Biochem Biophys; 2001 Mar; 387(2):243-9. PubMed ID: 11370847
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A comparative spectroscopic study of tryptophan probes engineered into high- and low-affinity domains of recombinant chicken troponin C.
    Trigo-Gonzalez G; Racher K; Burtnick L; Borgford T
    Biochemistry; 1992 Aug; 31(31):7009-15. PubMed ID: 1643035
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cardiac troponin C (TnC) and a site I skeletal TnC mutant alter Ca2+ versus crossbridge contribution to force in rabbit skeletal fibres.
    Moreno-Gonzalez A; Fredlund J; Regnier M
    J Physiol; 2005 Feb; 562(Pt 3):873-84. PubMed ID: 15611027
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tryptophan mutants of troponin C from skeletal muscle--an optical probe of the regulatory domain.
    She M; Dong WJ; Umeda PK; Cheung HC
    Eur J Biochem; 1998 Mar; 252(3):600-7. PubMed ID: 9546679
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural and functional studies on Troponin I and Troponin C interactions.
    Ngai SM; Pearlstone JR; Farah CS; Reinach FC; Smillie LB; Hodges RS
    J Cell Biochem; 2001 Jun 26-Jul 25; 83(1):33-46. PubMed ID: 11500952
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The role of troponin C in the length dependence of Ca(2+)-sensitive force of mammalian skeletal and cardiac muscles.
    Gulati J; Sonnenblick E; Babu A
    J Physiol; 1991 Sep; 441():305-24. PubMed ID: 1816378
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The role of troponin C in modulating the Ca2+ sensitivity of mammalian skinned cardiac and skeletal muscle fibres.
    Palmer S; Kentish JC
    J Physiol; 1994 Oct; 480 ( Pt 1)(Pt 1):45-60. PubMed ID: 7853225
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modulation of Ca2+ exchange with the Ca(2+)-specific regulatory sites of troponin C.
    Johnson JD; Nakkula RJ; Vasulka C; Smillie LB
    J Biol Chem; 1994 Mar; 269(12):8919-23. PubMed ID: 8132628
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evidence for two-site binding of troponin I inhibitory peptides to the N and C domains of troponin C.
    Pearlstone JR; Smillie LB
    Biochemistry; 1995 May; 34(21):6932-40. PubMed ID: 7766602
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The role of the Ca(2+) regulatory sites of skeletal troponin C in modulating muscle fibre reactivity to the Ca(2+) sensitizer bepridil.
    Kischel P; Bastide B; Potter JD; Mounier Y
    Br J Pharmacol; 2000 Dec; 131(7):1496-502. PubMed ID: 11090126
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Residues 48 and 82 at the N-terminal hydrophobic pocket of rabbit skeletal muscle troponin-C photo-cross-link to Met121 of troponin-I.
    Luo Y; Leszyk J; Qian Y; Gergely J; Tao T
    Biochemistry; 1999 May; 38(20):6678-88. PubMed ID: 10350487
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Investigating the role of Ca2+-binding site IV in barnacle troponin C.
    Allhouse LD; Li Q; Guzman G; Miller T; Lipscomb S; Potter JD; Ashley CC
    Pflugers Arch; 2000 Mar; 439(5):600-9. PubMed ID: 10764220
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Functional importance of Ca2+-deficient N-terminal lobe of molluscan troponin C in troponin regulation.
    Doi T; Satoh A; Tanaka H; Inoue A; Yumoto F; Tanokura M; Ohtsuki I; Nishita K; Ojima T
    Arch Biochem Biophys; 2005 Apr; 436(1):83-90. PubMed ID: 15752712
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Calcium structural transition of troponin in the complexes, on the thin filament, and in muscle fibres, as studied by site-directed spin-labelling EPR.
    Arata T; Aihara T; Ueda K; Nakamura M; Ueki S
    Adv Exp Med Biol; 2007; 592():125-35. PubMed ID: 17278361
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Calcium affinity of regulatory sites in skeletal troponin-C is attenuated by N-cap mutations of helix C.
    Leblanc L; Bennet A; Borgford T
    Arch Biochem Biophys; 2000 Dec; 384(2):296-304. PubMed ID: 11368316
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of Ca2+ binding properties of troponin C on rate of skeletal muscle force redevelopment.
    Lee RS; Tikunova SB; Kline KP; Zot HG; Hasbun JE; Minh NV; Swartz DR; Rall JA; Davis JP
    Am J Physiol Cell Physiol; 2010 Nov; 299(5):C1091-9. PubMed ID: 20702687
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The low-affinity Ca2(+)-binding sites in cardiac/slow skeletal muscle troponin C perform distinct functions: site I alone cannot trigger contraction.
    Sweeney HL; Brito RM; Rosevear PR; Putkey JA
    Proc Natl Acad Sci U S A; 1990 Dec; 87(24):9538-42. PubMed ID: 2263608
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stability and folding studies of the N-domain of troponin C. Evidence for the formation of an intermediate.
    Ramos CH; Lima MV; Silva SL; Borin PF; RĂ©gis WC; Santoro MM
    Arch Biochem Biophys; 2004 Jul; 427(2):135-42. PubMed ID: 15196987
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.