BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 10954585)

  • 1. Antizyme expression: a subversion of triplet decoding, which is remarkably conserved by evolution, is a sensor for an autoregulatory circuit.
    Ivanov IP; Gesteland RF; Atkins JF
    Nucleic Acids Res; 2000 Sep; 28(17):3185-96. PubMed ID: 10954585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Nascent Peptide Signal Responsive to Endogenous Levels of Polyamines Acts to Stimulate Regulatory Frameshifting on Antizyme mRNA.
    Yordanova MM; Wu C; Andreev DE; Sachs MS; Atkins JF
    J Biol Chem; 2015 Jul; 290(29):17863-17878. PubMed ID: 25998126
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Programmed frameshifting in the synthesis of mammalian antizyme is +1 in mammals, predominantly +1 in fission yeast, but -2 in budding yeast.
    Ivanov IP; Gesteland RF; Matsufuji S; Atkins JF
    RNA; 1998 Oct; 4(10):1230-8. PubMed ID: 9769097
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polyamine sensing during antizyme mRNA programmed frameshifting.
    Petros LM; Howard MT; Gesteland RF; Atkins JF
    Biochem Biophys Res Commun; 2005 Dec; 338(3):1478-89. PubMed ID: 16269132
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polyamine sensing by nascent ornithine decarboxylase antizyme stimulates decoding of its mRNA.
    Kurian L; Palanimurugan R; Gödderz D; Dohmen RJ
    Nature; 2011 Sep; 477(7365):490-4. PubMed ID: 21900894
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ribosomal frameshifting in decoding antizyme mRNAs from yeast and protists to humans: close to 300 cases reveal remarkable diversity despite underlying conservation.
    Ivanov IP; Atkins JF
    Nucleic Acids Res; 2007; 35(6):1842-58. PubMed ID: 17332016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Autoregulatory frameshifting in decoding mammalian ornithine decarboxylase antizyme.
    Matsufuji S; Matsufuji T; Miyazaki Y; Murakami Y; Atkins JF; Gesteland RF; Hayashi S
    Cell; 1995 Jan; 80(1):51-60. PubMed ID: 7813017
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conservation of polyamine regulation by translational frameshifting from yeast to mammals.
    Ivanov IP; Matsufuji S; Murakami Y; Gesteland RF; Atkins JF
    EMBO J; 2000 Apr; 19(8):1907-17. PubMed ID: 10775274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A sequence required for -1 ribosomal frameshifting located four kilobases downstream of the frameshift site.
    Paul CP; Barry JK; Dinesh-Kumar SP; Brault V; Miller WA
    J Mol Biol; 2001 Jul; 310(5):987-99. PubMed ID: 11502008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ribosomal frameshifting and transcriptional slippage: From genetic steganography and cryptography to adventitious use.
    Atkins JF; Loughran G; Bhatt PR; Firth AE; Baranov PV
    Nucleic Acids Res; 2016 Sep; 44(15):7007-78. PubMed ID: 27436286
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A second mammalian antizyme: conservation of programmed ribosomal frameshifting.
    Ivanov IP; Gesteland RF; Atkins JF
    Genomics; 1998 Sep; 52(2):119-29. PubMed ID: 9782076
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolutionary specialization of recoding: frameshifting in the expression of S. cerevisiae antizyme mRNA is via an atypical antizyme shift site but is still +1.
    Ivanov IP; Gesteland RF; Atkins JF
    RNA; 2006 Mar; 12(3):332-7. PubMed ID: 16431984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ornithine decarboxylase antizyme finder (OAF): fast and reliable detection of antizymes with frameshifts in mRNAs.
    Bekaert M; Ivanov IP; Atkins JF; Baranov PV
    BMC Bioinformatics; 2008 Apr; 9():178. PubMed ID: 18384676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Translation efficiency affects the sequence-independent +1 ribosomal frameshifting by polyamines.
    Oguro A; Shigeta T; Machida K; Suzuki T; Iwamoto T; Matsufuji S; Imataka H
    J Biochem; 2020 Aug; 168(2):139-149. PubMed ID: 32181810
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of a new antizyme mRNA +1 frameshifting stimulatory pseudoknot in a subset of diverse invertebrates and its apparent absence in intermediate species.
    Ivanov IP; Anderson CB; Gesteland RF; Atkins JF
    J Mol Biol; 2004 Jun; 339(3):495-504. PubMed ID: 15147837
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hypusinated eIF5A Promotes Ribosomal Frameshifting during Decoding of ODC Antizyme mRNA in
    Halwas K; Döring LM; Oehlert FV; Dohmen RJ
    Int J Mol Sci; 2022 Oct; 23(21):. PubMed ID: 36361762
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of Cotranslational Polyamine Sensing During Decoding of ODC Antizyme mRNA.
    Palanimurugan R; Gödderz D; Kurian L; Dohmen RJ
    Methods Mol Biol; 2018; 1694():309-323. PubMed ID: 29080176
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for ribosomal frameshifting and a novel overlapping gene in the genomes of insect-specific flaviviruses.
    Firth AE; Blitvich BJ; Wills NM; Miller CL; Atkins JF
    Virology; 2010 Mar; 399(1):153-166. PubMed ID: 20097399
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two zebrafish (Danio rerio) antizymes with different expression and activities.
    Saito T; Hascilowicz T; Ohkido I; Kikuchi Y; Okamoto H; Hayashi S; Murakami Y; Matsufuji S
    Biochem J; 2000 Jan; 345 Pt 1(Pt 1):99-106. PubMed ID: 10600644
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of putative programmed -1 ribosomal frameshift signals in large DNA databases.
    Hammell AB; Taylor RC; Peltz SW; Dinman JD
    Genome Res; 1999 May; 9(5):417-27. PubMed ID: 10330121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.