BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 10954594)

  • 1. Structure-function relationships of two closely related group IC3 intron ribozymes from Azoarcus and Synechococcus pre-tRNA.
    Ikawa Y; Naito D; Shiraishi H; Inoue T
    Nucleic Acids Res; 2000 Sep; 28(17):3269-77. PubMed ID: 10954594
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A chemical phylogeny of group I introns based upon interference mapping of a bacterial ribozyme.
    Strauss-Soukup JK; Strobel SA
    J Mol Biol; 2000 Sep; 302(2):339-58. PubMed ID: 10970738
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trans-splicing with the group I intron ribozyme from Azoarcus.
    Dolan GF; Müller UF
    RNA; 2014 Feb; 20(2):202-13. PubMed ID: 24344321
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the Azoarcus ribozyme: tight binding to guanosine and substrate by an unusually small group I ribozyme.
    Kuo LY; Davidson LA; Pico S
    Biochim Biophys Acta; 1999 Dec; 1489(2-3):281-92. PubMed ID: 10673029
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Architecture and folding mechanism of the Azoarcus Group I Pre-tRNA.
    Rangan P; Masquida B; Westhof E; Woodson SA
    J Mol Biol; 2004 May; 339(1):41-51. PubMed ID: 15123419
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structure of a self-splicing group I intron with both exons.
    Adams PL; Stahley MR; Kosek AB; Wang J; Strobel SA
    Nature; 2004 Jul; 430(6995):45-50. PubMed ID: 15175762
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural requirement for Mg2+ binding in the group I intron core.
    Rangan P; Woodson SA
    J Mol Biol; 2003 May; 329(2):229-38. PubMed ID: 12758072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generalized RNA-directed recombination of RNA.
    Riley CA; Lehman N
    Chem Biol; 2003 Dec; 10(12):1233-43. PubMed ID: 14700631
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assembly of core helices and rapid tertiary folding of a small bacterial group I ribozyme.
    Rangan P; Masquida B; Westhof E; Woodson SA
    Proc Natl Acad Sci U S A; 2003 Feb; 100(4):1574-9. PubMed ID: 12574513
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A kinetic and thermodynamic framework for the Azoarcus group I ribozyme reaction.
    Gleitsman KR; Herschlag DH
    RNA; 2014 Nov; 20(11):1732-46. PubMed ID: 25246656
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of A-minor tertiary interactions within a bacterial group I intron active site by 3-deazaadenosine interference mapping.
    Soukup JK; Minakawa N; Matsuda A; Strobel SA
    Biochemistry; 2002 Aug; 41(33):10426-38. PubMed ID: 12173929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Minimal catalytic domain of a group I self-splicing intron RNA.
    Ikawa Y; Shiraishi H; Inoue T
    Nat Struct Biol; 2000 Nov; 7(11):1032-5. PubMed ID: 11062558
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RNA-directed construction of structurally complex and active ligase ribozymes through recombination.
    Hayden EJ; Riley CA; Burton AS; Lehman N
    RNA; 2005 Nov; 11(11):1678-87. PubMed ID: 16177133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of P8 and J8/7 elements in the conserved core of the tetrahymena group I intron ribozyme.
    Ikawa Y; Shiraishi H; Inoue T
    Biochem Biophys Res Commun; 2000 Jan; 267(1):85-90. PubMed ID: 10623579
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leaving group stabilization by metal ion coordination and hydrogen bond donation is an evolutionarily conserved feature of group I introns.
    Kuo LY; Piccirilli JA
    Biochim Biophys Acta; 2001 Dec; 1522(3):158-66. PubMed ID: 11779630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Azoarcus group I intron ribozyme misfolds and is accelerated for refolding by ATP-dependent RNA chaperone proteins.
    Sinan S; Yuan X; Russell R
    J Biol Chem; 2011 Oct; 286(43):37304-12. PubMed ID: 21878649
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural metals in the group I intron: a ribozyme with a multiple metal ion core.
    Stahley MR; Adams PL; Wang J; Strobel SA
    J Mol Biol; 2007 Sep; 372(1):89-102. PubMed ID: 17612557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A conserved motif in group IC3 introns is a new class of GNRA receptor.
    Ikawa Y; Naito D; Aono N; Shiraishi H; Inoue T
    Nucleic Acids Res; 1999 Apr; 27(8):1859-65. PubMed ID: 10101194
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An alternative intron-exon pairing scheme implied by unexpected in vitro activities of group II intron RmInt1 from Sinorhizobium meliloti.
    Costa M; Michel F; Molina-Sánchez MD; Martinez-Abarca F; Toro N
    Biochimie; 2006 Jun; 88(6):711-7. PubMed ID: 16460862
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distinct sites of phosphorothioate substitution interfere with folding and splicing of the Anabaena group I intron.
    Lupták A; Doudna JA
    Nucleic Acids Res; 2004; 32(7):2272-80. PubMed ID: 15107495
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.