These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

2494 related articles for article (PubMed ID: 10955408)

  • 1. Marginal structural models and causal inference in epidemiology.
    Robins JM; Hernán MA; Brumback B
    Epidemiology; 2000 Sep; 11(5):550-60. PubMed ID: 10955408
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Marginal structural models to estimate the causal effect of zidovudine on the survival of HIV-positive men.
    Hernán MA; Brumback B; Robins JM
    Epidemiology; 2000 Sep; 11(5):561-70. PubMed ID: 10955409
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimating the causal effect of zidovudine on CD4 count with a marginal structural model for repeated measures.
    Hernán MA; Brumback BA; Robins JM
    Stat Med; 2002 Jun; 21(12):1689-709. PubMed ID: 12111906
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A sequential Cox approach for estimating the causal effect of treatment in the presence of time-dependent confounding applied to data from the Swiss HIV Cohort Study.
    Gran JM; Røysland K; Wolbers M; Didelez V; Sterne JA; Ledergerber B; Furrer H; von Wyl V; Aalen OO
    Stat Med; 2010 Nov; 29(26):2757-68. PubMed ID: 20803557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensitivity analyses for unmeasured confounding assuming a marginal structural model for repeated measures.
    Brumback BA; Hernán MA; Haneuse SJ; Robins JM
    Stat Med; 2004 Mar; 23(5):749-67. PubMed ID: 14981673
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring the Subtleties of Inverse Probability Weighting and Marginal Structural Models.
    Breskin A; Cole SR; Westreich D
    Epidemiology; 2018 May; 29(3):352-355. PubMed ID: 29384789
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural accelerated failure time models for survival analysis in studies with time-varying treatments.
    Hernán MA; Cole SR; Margolick J; Cohen M; Robins JM
    Pharmacoepidemiol Drug Saf; 2005 Jul; 14(7):477-91. PubMed ID: 15660442
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Causal inference based on counterfactuals.
    Höfler M
    BMC Med Res Methodol; 2005 Sep; 5():28. PubMed ID: 16159397
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding Marginal Structural Models for Time-Varying Exposures: Pitfalls and Tips.
    Shinozaki T; Suzuki E
    J Epidemiol; 2020 Sep; 30(9):377-389. PubMed ID: 32684529
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correcting for Measurement Error in Time-Varying Covariates in Marginal Structural Models.
    Kyle RP; Moodie EE; Klein MB; Abrahamowicz M
    Am J Epidemiol; 2016 Aug; 184(3):249-58. PubMed ID: 27416840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Marginal structural models as a tool for standardization.
    Sato T; Matsuyama Y
    Epidemiology; 2003 Nov; 14(6):680-6. PubMed ID: 14569183
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Causal inference in epidemiological studies with strong confounding.
    Moore KL; Neugebauer R; van der Laan MJ; Tager IB
    Stat Med; 2012 Jun; 31(13):1380-404. PubMed ID: 22362629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Causal models adjusting for time-varying confounding-a systematic review of the literature.
    Clare PJ; Dobbins TA; Mattick RP
    Int J Epidemiol; 2019 Feb; 48(1):254-265. PubMed ID: 30358847
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Instrumental variables and inverse probability weighting for causal inference from longitudinal observational studies.
    Hogan JW; Lancaster T
    Stat Methods Med Res; 2004 Feb; 13(1):17-48. PubMed ID: 14746439
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple Imputation to Account for Measurement Error in Marginal Structural Models.
    Edwards JK; Cole SR; Westreich D; Crane H; Eron JJ; Mathews WC; Moore R; Boswell SL; Lesko CR; Mugavero MJ;
    Epidemiology; 2015 Sep; 26(5):645-52. PubMed ID: 26214338
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unifying instrumental variable and inverse probability weighting approaches for inference of causal treatment effect and unmeasured confounding in observational studies.
    Liu T; Hogan JW
    Stat Methods Med Res; 2021 Mar; 30(3):671-686. PubMed ID: 33213292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A simulation study of finite-sample properties of marginal structural Cox proportional hazards models.
    Westreich D; Cole SR; Schisterman EF; Platt RW
    Stat Med; 2012 Aug; 31(19):2098-109. PubMed ID: 22492660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Causal effect models for realistic individualized treatment and intention to treat rules.
    van der Laan MJ; Petersen ML
    Int J Biostat; 2007; 3(1):Article 3. PubMed ID: 19122793
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inverse-probability-of-treatment weighted estimation of causal parameters in the presence of error-contaminated and time-dependent confounders.
    Shu D; Yi GY
    Biom J; 2019 Nov; 61(6):1507-1525. PubMed ID: 31449324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ensemble learning of inverse probability weights for marginal structural modeling in large observational datasets.
    Gruber S; Logan RW; Jarrín I; Monge S; Hernán MA
    Stat Med; 2015 Jan; 34(1):106-17. PubMed ID: 25316152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 125.