These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 10955833)

  • 21. [Products of biphenyl catabolism by a Pseudomonas putida strain carrying the biodegradation plasmid pBS 241].
    Starovoĭtov II; Seifonov SA; Nefedova MIu; Adanin VM
    Izv Akad Nauk SSSR Biol; 1988; (1):51-7. PubMed ID: 3351100
    [No Abstract]   [Full Text] [Related]  

  • 22. [Comparative study of the plasmids controlling naphthalene biodegradation by a Pseudomonas culture].
    Kochetkov VV; Boronin AM
    Mikrobiologiia; 1984; 53(4):639-44. PubMed ID: 6434909
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Formation and release of non-extractable 14C-Dicamba residues in soil under sterile and non-sterile regimes.
    Gevao B; Jones KC; Semple KT
    Environ Pollut; 2005 Jan; 133(1):17-24. PubMed ID: 15327852
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biodegradation of oxadiazon by a soil isolated Pseudomonas fluorescens strain CG5: Implementation in an herbicide removal reactor and modelling.
    Garbi C; Casasús L; Martinez-Alvarez R; Ignacio Robla J; Martín M
    Water Res; 2006 Mar; 40(6):1217-23. PubMed ID: 16516265
    [TBL] [Abstract][Full Text] [Related]  

  • 25. On the mechanism of selectivity of the corn herbicide BAS 662H: a combination of the novel auxin transport inhibitor diflufenzopyr and the auxin herbicide dicamba.
    Grossmann K; Caspar G; Kwiatkowski J; Bowe SJ
    Pest Manag Sci; 2002 Oct; 58(10):1002-14. PubMed ID: 12400439
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Complete nucleotide sequence and organization of the naphthalene catabolic plasmid pND6-1 from Pseudomonas sp. strain ND6.
    Li W; Shi J; Wang X; Han Y; Tong W; Ma L; Liu B; Cai B
    Gene; 2004 Jul; 336(2):231-40. PubMed ID: 15246534
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A novel catabolic activity of Pseudomonas veronii in biotransformation of pentachlorophenol.
    Nam IH; Chang YS; Hong HB; Lee YE
    Appl Microbiol Biotechnol; 2003 Aug; 62(2-3):284-90. PubMed ID: 12883877
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Identification of the key genes of naphthalene catabolism in soil DNA].
    Mavrodi DV; Kovalenko NP; Sokolov SL; Parfeniuk VG; Kosheleva IA; Boronin AM
    Mikrobiologiia; 2003; 72(5):672-80. PubMed ID: 14679907
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Roles of Two Glutathione-Dependent 3,6-Dichlorogentisate Dehalogenases in Rhizorhabdus dicambivorans Ndbn-20 in the Catabolism of the Herbicide Dicamba.
    Li N; Tong RL; Yao L; Chen Q; Yan X; Ding DR; Qiu JG; He J; Jiang JD
    Appl Environ Microbiol; 2018 Sep; 84(17):. PubMed ID: 29934333
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biodegradation of phenanthrene by Pseudomonas sp. strain PP2: novel metabolic pathway, role of biosurfactant and cell surface hydrophobicity in hydrocarbon assimilation.
    Prabhu Y; Phale PS
    Appl Microbiol Biotechnol; 2003 May; 61(4):342-51. PubMed ID: 12743764
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparative analysis of different Pseudomonas strains that degrade cinnamic acid.
    Andreoni V; Bestetti G
    Appl Environ Microbiol; 1986 Oct; 52(4):930-4. PubMed ID: 3777934
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analysis of dicamba degradation by Pseudomonas maltophilia using high-performance capillary electrophoresis.
    Yang J; Wang XZ; Hage DS; Herman PL; Weeks DP
    Anal Biochem; 1994 May; 219(1):37-42. PubMed ID: 8059953
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Characteristics of plasmid pBS271 controlling epsilon-caprolactam degradation by bacteria in the genus Pseudomonas].
    Boronin AM; Grishchenkov VG; Kulakov LA; Naumova RP
    Mikrobiologiia; 1986; 55(2):231-6. PubMed ID: 3724565
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Plasmid participation in the degradation of alpha-methylstyrene].
    Boronin AM; Anisimova LA; Golovleva LA; Dzhusupova DB; Skriabin GK
    Mikrobiologiia; 1985; 54(5):854-6. PubMed ID: 3937036
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Treatment of 2,4-D, mecoprop, and dicamba using membrane bioreactor technology.
    Ghoshdastidar AJ; Tong AZ
    Environ Sci Pollut Res Int; 2013 Aug; 20(8):5188-97. PubMed ID: 23361178
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Seasonal leaching and biodegradation of dicamba in turfgrass.
    Roy JW; Hall JC; Parkin GW; Wagner-Riddle C; Clegg BS
    J Environ Qual; 2001; 30(4):1360-70. PubMed ID: 11476515
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sorption of aged dicamba residues in soil.
    Menasseri S; Koskinen WC; Yen PY
    Pest Manag Sci; 2004 Mar; 60(3):297-304. PubMed ID: 15025242
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Aerobic biodegradation characteristics and metabolic products of quinoline by a Pseudomonas strain.
    Sun Q; Bai Y; Zhao C; Xiao Y; Wen D; Tang X
    Bioresour Technol; 2009 Nov; 100(21):5030-6. PubMed ID: 19540106
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Isolation and characterization of soil microorganisms capable of utilizing the herbicide diclofop-methyl as a sole source of carbon and energy.
    Smith-Greeier LL; Adkins A
    Can J Microbiol; 1996 Mar; 42(3):221-6. PubMed ID: 8868228
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Breakdown of alkyl sulfonate by Pseudomonas rathonis].
    Stavskaia SS; Taranova LA; Grigor'eva TIu; Degtiarev VA; Pisarev VT
    Mikrobiologiia; 1984; 53(2):218-22. PubMed ID: 6330506
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.