These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Effect of nucleotide cofactor structure on recA protein-promoted DNA pairing. 1. Three-strand exchange reaction. Menge KL; Bryant FR Biochemistry; 1992 Jun; 31(22):5151-7. PubMed ID: 1606138 [TBL] [Abstract][Full Text] [Related]
3. Effects of purinenucleotide analogues on microtubule assembly. Muraoka M; Sakai H Cell Struct Funct; 1999 Oct; 24(5):305-12. PubMed ID: 15216887 [TBL] [Abstract][Full Text] [Related]
4. Functionally nonequivalent interactions of guanosine 5'-triphosphate, inosine 5'-triphosphate, and xanthosine 5'-triphosphate with the retinal G-protein, transducin, and with Gi-proteins in HL-60 leukemia cell membranes. Klinker JF; Seifert R Biochem Pharmacol; 1997 Sep; 54(5):551-62. PubMed ID: 9337071 [TBL] [Abstract][Full Text] [Related]
5. Stabilities and isomeric equilibria in solutions of monomeric metal-ion complexes of guanosine 5'-triphosphate (GTP4-) and inosine 5'-triphosphate (ITP4-) in comparison with those of adenosine 5'-triphosphate (ATP4-). Sigel H; Bianchi EM; Corfù NA; Kinjo Y; Tribolet R; Martin RB Chemistry; 2001 Sep; 7(17):3729-37. PubMed ID: 11575773 [TBL] [Abstract][Full Text] [Related]
6. Tubulin polymerization with ATP is mediated through the exchangeable GTP site. Duanmu C; Lin CM; Hamel E Biochim Biophys Acta; 1986 Mar; 881(1):113-23. PubMed ID: 3004597 [TBL] [Abstract][Full Text] [Related]
7. Distinct interactions of G(salpha-long), G(salpha-short), and G(alphaolf) with GTP, ITP, and XTP. Liu HY; Seifert R Biochem Pharmacol; 2002 Aug; 64(4):583-93. PubMed ID: 12167477 [TBL] [Abstract][Full Text] [Related]
8. The effects of various GTP analogues on microtubule assembly. Muraoka M; Fukuzawa H; Nishida A; Okano K; Tsuchihara T; Shimoda A; Suzuki Y; Sato M; Osumi M; Sakai H Cell Struct Funct; 1999 Apr; 24(2):101-9. PubMed ID: 10362073 [TBL] [Abstract][Full Text] [Related]
9. Reexamination of the role of nonhydrolyzable guanosine 5'-triphosphate analogues in tubulin polymerization: reaction conditions are a critical factor for effective interactions at the exchangeable nucleotide site. Hamel E; Lin CM Biochemistry; 1990 Mar; 29(11):2720-9. PubMed ID: 2346744 [TBL] [Abstract][Full Text] [Related]
10. Acid-base properties of nucleosides and nucleotides as a function of concentration. Comparison of the proton affinity of the nucleic base residues in the monomeric and self-associated, oligomeric 5'-triphosphates of inosine (ITP), guanosine (GTP), and adenosine (ATP). Corfù NA; Sigel H Eur J Biochem; 1991 Aug; 199(3):659-69. PubMed ID: 1868851 [TBL] [Abstract][Full Text] [Related]
11. Comparison of the self-association properties of the 5'-triphosphates of inosine (ITP), guanosine (GTP), and adenosine (ATP). Further evidence for ionic interactions in the highly stable dimeric [H2(ATP)]2(4-) stack. Corfù NA; Tribolet R; Sigel H Eur J Biochem; 1990 Aug; 191(3):721-35. PubMed ID: 2167851 [TBL] [Abstract][Full Text] [Related]
12. Effect of nucleotide cofactor structure on recA protein-promoted DNA pairing. 2. DNA renaturation reaction. Menge KL; Bryant FR Biochemistry; 1992 Jun; 31(22):5158-65. PubMed ID: 1606139 [TBL] [Abstract][Full Text] [Related]
13. Assembly of pure tubulin in the absence of free GTP: effect of magnesium, glycerol, ATP, and the nonhydrolyzable GTP analogues. O'Brien ET; Erickson HP Biochemistry; 1989 Feb; 28(3):1413-22. PubMed ID: 2713372 [TBL] [Abstract][Full Text] [Related]
14. Effects of guanine, inosine, and xanthine nucleotides on beta(2)-adrenergic receptor/G(s) interactions: evidence for multiple receptor conformations. Seifert R; Gether U; Wenzel-Seifert K; Kobilka BK Mol Pharmacol; 1999 Aug; 56(2):348-58. PubMed ID: 10419554 [TBL] [Abstract][Full Text] [Related]
15. Studies on the nocodazole-induced GTPase activity of tubulin. Mejillano MR; Shivanna BD; Himes RH Arch Biochem Biophys; 1996 Dec; 336(1):130-8. PubMed ID: 8951043 [TBL] [Abstract][Full Text] [Related]
16. Nucleotide release from tubulin and nucleoside-5'-diphosphate kinase action in microtubule assembly. Terry BJ; Purich DL J Biol Chem; 1979 Oct; 254(19):9469-76. PubMed ID: 226518 [TBL] [Abstract][Full Text] [Related]
17. Deoxyguanosine nucleotide analogues: potent stimulators of microtubule nucleation with reduced affinity for the exchangeable nucleotide site of tubulin. Hamel E; Lustbader J; Lin CM Biochemistry; 1984 Oct; 23(22):5314-25. PubMed ID: 6509023 [TBL] [Abstract][Full Text] [Related]
18. Purine but not pyrimidine nucleotides support rotation of F(1)-ATPase. Noji H; Bald D; Yasuda R; Itoh H; Yoshida M; Kinosita K J Biol Chem; 2001 Jul; 276(27):25480-6. PubMed ID: 11279248 [TBL] [Abstract][Full Text] [Related]
19. Roles of nucleoside triphosphates in microtubule assembly. Kobayashi T; Simizu T J Biochem; 1976 Jun; 79(6):1357-64. PubMed ID: 956160 [TBL] [Abstract][Full Text] [Related]
20. Interaction of tubulin with ribose-modified analogs of GTP and GDP: evidence for two mutually exclusive exchangeable nucleotide binding sites. Hamel E; Lin CM Proc Natl Acad Sci U S A; 1981 Jun; 78(6):3368-72. PubMed ID: 6943545 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]