BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 10956071)

  • 1. Ability of surfactant hydrophobic tail group size to alter lipid oxidation in oil-in-water emulsions.
    Chaiyasit W; Silvestre MP; McClements DJ; Decker EA
    J Agric Food Chem; 2000 Aug; 48(8):3077-80. PubMed ID: 10956071
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ability of surfactant headgroup size to alter lipid and antioxidant oxidation in oil-in-water emulsions.
    Silvestre MP; Chaiyasit W; Brannan RG; McClements DJ; Decker EA
    J Agric Food Chem; 2000 Jun; 48(6):2057-61. PubMed ID: 10888498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ability of surfactant micelles to alter the physical location and reactivity of iron in oil-in-water emulsion.
    Cho YJ; McClements DJ; Decker EA
    J Agric Food Chem; 2002 Sep; 50(20):5704-10. PubMed ID: 12236702
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ability of lipid hydroperoxides to partition into surfactant micelles and alter lipid oxidation rates in emulsions.
    Nuchi CD; Hernandez P; McClements DJ; Decker EA
    J Agric Food Chem; 2002 Sep; 50(19):5445-9. PubMed ID: 12207489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of surfactant type, pH, and chelators on the oxidation of salmon oil-in-water emulsions.
    Mancuso JR; McClements DJ; Decker EA
    J Agric Food Chem; 1999 Oct; 47(10):4112-6. PubMed ID: 10552775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of lateral heterogeneity in mixed surfactant-stabilized interfaces on the oxidation of unsaturated lipids in oil-in-water emulsions.
    Berton C; Genot C; Guibert D; Ropers MH
    J Colloid Interface Sci; 2012 Jul; 377(1):244-50. PubMed ID: 22525896
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lipid oxidation in emulsions as affected by charge status of antioxidants and emulsion droplets.
    Mei L; McClements DJ; Decker EA
    J Agric Food Chem; 1999 Jun; 47(6):2267-73. PubMed ID: 10794621
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Factors affecting lycopene oxidation in oil-in-water emulsions.
    Boon CS; Xu Z; Yue X; McClements DJ; Weiss J; Decker EA
    J Agric Food Chem; 2008 Feb; 56(4):1408-14. PubMed ID: 18237137
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of tween 20 hydroperoxides and iron on the oxidation of methyl linoleate and salmon oil dispersions.
    Nuchi CD; McClements DJ; Decker EA
    J Agric Food Chem; 2001 Oct; 49(10):4912-6. PubMed ID: 11600043
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of Interfacial Composition on Lipid and Protein Co-Oxidation in Oil-in-Water Emulsions Containing Mixed Emulisifers.
    Zhu Z; Zhao C; Yi J; Liu N; Cao Y; Decker EA; McClements DJ
    J Agric Food Chem; 2018 May; 66(17):4458-4468. PubMed ID: 29648824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of Chelating Agents and Salts on Interfacial Properties and Lipid Oxidation in Oil-in-Water Emulsions.
    Liu J; Guo Y; Li X; Si T; McClements DJ; Ma C
    J Agric Food Chem; 2019 Dec; 67(49):13718-13727. PubMed ID: 30614702
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Droplet-Stabilized Oil-in-Water Emulsions Protect Unsaturated Lipids from Oxidation.
    Okubanjo SS; Loveday SM; Ye A; Wilde PJ; Singh H
    J Agric Food Chem; 2019 Mar; 67(9):2626-2636. PubMed ID: 30608676
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Citral stability in oil-in-water emulsions with solid or liquid octadecane.
    Mei L; Choi SJ; Alamed J; Henson L; Popplewell M; McClements DJ; Decker EA
    J Agric Food Chem; 2010 Jan; 58(1):533-6. PubMed ID: 19911843
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contribution of the interfacial layer to the protection of emulsified lipids against oxidation.
    Berton C; Ropers MH; Viau M; Genot C
    J Agric Food Chem; 2011 May; 59(9):5052-61. PubMed ID: 21480612
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of flow cytometry as novel technology in studying lipid oxidation and mass transport phenomena in oil-in-water emulsions.
    Li P; McClements DJ; Decker EA
    Food Chem; 2020 Jun; 315():126225. PubMed ID: 32000078
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of interfacial microstructure on the lipid oxidation stability of oil-in-water emulsions.
    Kargar M; Spyropoulos F; Norton IT
    J Colloid Interface Sci; 2011 May; 357(2):527-33. PubMed ID: 21388633
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ability of surfactant micelles to alter the partitioning of phenolic antioxidants in oil-in-water emulsions.
    Richards MP; Chaiyasit W; McClements DJ; Decker EA
    J Agric Food Chem; 2002 Feb; 50(5):1254-9. PubMed ID: 11853513
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of droplet charge on the chemical stability of citral in oil-in-water emulsions.
    Choi SJ; Decker EA; Henson L; Popplewell LM; McClements DJ
    J Food Sci; 2010 Aug; 75(6):C536-40. PubMed ID: 20722908
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of lipid physical state on the oxidation of methyl linolenate in oil-in-water emulsions.
    Okuda S; McClements DJ; Decker EA
    J Agric Food Chem; 2005 Nov; 53(24):9624-8. PubMed ID: 16302787
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of Flow Cytometry As Novel Technology in Studying the Effect of Droplet Size on Lipid Oxidation in Oil-in-Water Emulsions.
    Li P; McClements DJ; Decker EA
    J Agric Food Chem; 2020 Jan; 68(2):567-573. PubMed ID: 31860290
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.