These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 10956076)
1. Saccharomyces cerevisiae mannoproteins that protect wine from protein haze: their release during fermentation and lees contact and a proposal for their mechanism of action. Dupin IV; McKinnon BM; Ryan C; Boulay M; Markides AJ; Jones GP; Williams PJ; Waters EJ J Agric Food Chem; 2000 Aug; 48(8):3098-105. PubMed ID: 10956076 [TBL] [Abstract][Full Text] [Related]
2. Saccharomyces cerevisiae mannoproteins that protect wine from protein haze: evaluation of extraction methods and immunolocalization. Dupin IV; Stockdale VJ; Williams PJ; Jones GP; Markides AJ; Waters EJ J Agric Food Chem; 2000 Apr; 48(4):1086-95. PubMed ID: 10775354 [TBL] [Abstract][Full Text] [Related]
3. Pulsed electric fields accelerate release of mannoproteins from Saccharomyces cerevisiae during aging on the lees of Chardonnay wine. Martínez JM; Delso C; Maza MA; Álvarez I; Raso J Food Res Int; 2019 Feb; 116():795-801. PubMed ID: 30717010 [TBL] [Abstract][Full Text] [Related]
4. A recombinant Saccharomyces cerevisiae strain overproducing mannoproteins stabilizes wine against protein haze. Gonzalez-Ramos D; Cebollero E; Gonzalez R Appl Environ Microbiol; 2008 Sep; 74(17):5533-40. PubMed ID: 18606802 [TBL] [Abstract][Full Text] [Related]
5. Increased mannoprotein content in wines produced by Saccharomyces kudriavzevii×Saccharomyces cerevisiae hybrids. Pérez-Través L; Querol A; Pérez-Torrado R Int J Food Microbiol; 2016 Nov; 237():35-38. PubMed ID: 27543813 [TBL] [Abstract][Full Text] [Related]
7. Reducing haziness in white wine by overexpression of Saccharomyces cerevisiae genes YOL155c and YDR055w. Brown SL; Stockdale VJ; Pettolino F; Pocock KF; de Barros Lopes M; Williams PJ; Bacic A; Fincher GB; Høj PB; Waters EJ Appl Microbiol Biotechnol; 2007 Jan; 73(6):1363-76. PubMed ID: 17024473 [TBL] [Abstract][Full Text] [Related]
8. Protection of Wine from Protein Haze Using Millarini V; Ignesti S; Cappelli S; Ferraro G; Adessi A; Zanoni B; Fratini E; Domizio P Foods; 2020 Oct; 9(10):. PubMed ID: 33022982 [TBL] [Abstract][Full Text] [Related]
9. Interactions between Starmerella bacillaris and Saccharomyces cerevisiae during sequential fermentations influence the release of yeast mannoproteins and impact the protein stability of an unstable wine. Moreira LPD; Porcellato D; Marangon M; Nadai C; Duarte VDS; Devold TG; Giacomini A; Corich V Food Chem; 2024 May; 440():138311. PubMed ID: 38160596 [TBL] [Abstract][Full Text] [Related]
10. Physiological and genomic characterisation of Saccharomyces cerevisiae hybrids with improved fermentation performance and mannoprotein release capacity. Pérez-Través L; Lopes CA; González R; Barrio E; Querol A Int J Food Microbiol; 2015 Jul; 205():30-40. PubMed ID: 25879876 [TBL] [Abstract][Full Text] [Related]
11. Three different targets for the genetic modification of wine yeast strains resulting in improved effectiveness of bentonite fining. Gonzalez-Ramos D; Quirós M; Gonzalez R J Agric Food Chem; 2009 Sep; 57(18):8373-8. PubMed ID: 19705828 [TBL] [Abstract][Full Text] [Related]
12. Enological functions of parietal yeast mannoproteins. Caridi A Antonie Van Leeuwenhoek; 2006; 89(3-4):417-22. PubMed ID: 16622788 [TBL] [Abstract][Full Text] [Related]
13. Flocculation and transcriptional adaptation to fermentation conditions in a recombinant wine yeast strain defective for KNR4/SMI1. Penacho V; Blondin B; Valero E; Gonzalez R Biotechnol Prog; 2012; 28(2):327-36. PubMed ID: 22065482 [TBL] [Abstract][Full Text] [Related]
14. Genetic determinants of the release of mannoproteins of enological interest by Saccharomyces cerevisiae. Gonzalez-Ramos D; Gonzalez R J Agric Food Chem; 2006 Dec; 54(25):9411-6. PubMed ID: 17147426 [TBL] [Abstract][Full Text] [Related]
15. Protein haze formation in white wines: effect of saccharomyces cerevisiae cell wall components prepared with different procedures. Lomolino G; Curioni A J Agric Food Chem; 2007 Oct; 55(21):8737-44. PubMed ID: 17880153 [TBL] [Abstract][Full Text] [Related]
16. A new methodology to obtain wine yeast strains overproducing mannoproteins. Quirós M; Gonzalez-Ramos D; Tabera L; Gonzalez R Int J Food Microbiol; 2010 Apr; 139(1-2):9-14. PubMed ID: 20219260 [TBL] [Abstract][Full Text] [Related]
17. Outlining the influence of non-conventional yeasts in wine ageing over lees. Belda I; Navascués E; Marquina D; Santos A; Calderón F; Benito S Yeast; 2016 Jul; 33(7):329-38. PubMed ID: 27017923 [TBL] [Abstract][Full Text] [Related]
18. Wine Yeast Cells Acquire Resistance to Severe Ethanol Stress and Suppress Insoluble Protein Accumulation during Alcoholic Fermentation. Yoshida M; Furutani N; Imai F; Miki T; Izawa S Microbiol Spectr; 2022 Oct; 10(5):e0090122. PubMed ID: 36040149 [TBL] [Abstract][Full Text] [Related]
19. A Novel Method for the Quantification of White Wine Mannoproteins by a Competitive Indirect Enzyme-Linked Lectin Sorbent Assay (CI-ELLSA). Marangon M; Vegro M; Vincenzi S; Lomolino G; De Iseppi A; Curioni A Molecules; 2018 Nov; 23(12):. PubMed ID: 30477183 [TBL] [Abstract][Full Text] [Related]
20. Interactions of grape tannins and wine polyphenols with a yeast protein extract, mannoproteins and β-glucan. Mekoue Nguela J; Poncet-Legrand C; Sieczkowski N; Vernhet A Food Chem; 2016 Nov; 210():671-82. PubMed ID: 27211695 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]