These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 10956141)

  • 1. Effect of urea on volatile generation from Maillard reaction of cysteine and ribose.
    Chen Y; Xing J; Chin CK; Ho CT
    J Agric Food Chem; 2000 Aug; 48(8):3512-6. PubMed ID: 10956141
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of carnosine on volatile generation from Maillard reaction of ribose and cysteine.
    Chen Y; Ho CT
    J Agric Food Chem; 2002 Apr; 50(8):2372-6. PubMed ID: 11929299
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of beef-like odorants from glutathione-enriched yeast extract
    Raza A; Song H; Raza J; Li P; Li K; Yao J
    Food Funct; 2020 Oct; 11(10):8583-8601. PubMed ID: 33026027
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of sulfur aroma compounds in reaction mixtures containing cysteine and three different forms of ribose.
    Mottram DS; Nobrega IC
    J Agric Food Chem; 2002 Jul; 50(14):4080-6. PubMed ID: 12083887
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of aroma compounds from ribose and cysteine during the Maillard reaction.
    Cerny C; Davidek T
    J Agric Food Chem; 2003 Apr; 51(9):2714-21. PubMed ID: 12696962
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structured fluids as microreactors for flavor formation by the Maillard reaction.
    Vauthey S; Milo C; Frossard P; Garti N; Leser ME; Watzke HJ
    J Agric Food Chem; 2000 Oct; 48(10):4808-16. PubMed ID: 11052737
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-intensity ultrasound production of Maillard reaction flavor compounds in a cysteine-xylose model system.
    Ong OXH; Seow YX; Ong PKC; Zhou W
    Ultrason Sonochem; 2015 Sep; 26():399-407. PubMed ID: 25640682
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alpha-mercaptoketone formation during the maillard reaction of cysteine and [1-(13)C]ribose.
    Cerny C; Davidek T
    J Agric Food Chem; 2004 Feb; 52(4):958-61. PubMed ID: 14969557
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heating and cysteine effect on physicochemical and flavor properties of soybean peptide Maillard reaction products.
    Zhang Z; Elfalleh W; He S; Tang M; Zhao J; Wu Z; Wang J; Sun H
    Int J Biol Macromol; 2018 Dec; 120(Pt B):2137-2146. PubMed ID: 30223057
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of DNA on volatile generation from Maillard reaction of cysteine and ribose.
    Chen Y; Chin CK; Ho CT
    Adv Exp Med Biol; 2004; 542():327-40. PubMed ID: 15174593
    [No Abstract]   [Full Text] [Related]  

  • 11. Effect of pH and temperature on the formation of volatile compounds in cysteine/reducing sugar/starch mixtures during extrusion cooking.
    Ames JM; Guy RC; Kipping GJ
    J Agric Food Chem; 2001 Apr; 49(4):1885-94. PubMed ID: 11308341
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterocyclic volatiles formed by heating cysteine or hydrogen sulfide with 4-hydroxy-5-methyl-3(2H)-furanone at pH 6.5.
    Whitfield FB; Mottram DS
    J Agric Food Chem; 2001 Feb; 49(2):816-22. PubMed ID: 11262035
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in volatile compounds of peanut oil during the roasting process for production of aromatic roasted peanut oil.
    Liu X; Jin Q; Liu Y; Huang J; Wang X; Mao W; Wang S
    J Food Sci; 2011 Apr; 76(3):C404-12. PubMed ID: 21535807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Temperature on Flavor Compounds and Sensory Characteristics of Maillard Reaction Products Derived from Mushroom Hydrolysate.
    Chen X; Yu J; Cui H; Xia S; Zhang X; Yang B
    Molecules; 2018 Jan; 23(2):. PubMed ID: 29373560
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of low molecular weight peptides (<1 kDa) in chicken meat and their contribution to meat flavor formation.
    Zhou R; Grant J; Goldberg EM; Ryland D; Aliani M
    J Sci Food Agric; 2019 Mar; 99(4):1728-1739. PubMed ID: 30226639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of lard on the formation of volatiles from the Maillard reaction of cysteine with xylose.
    Xu Y; Chen Q; Lei S; Wu P; Fan G; Xu X; Pan S
    J Sci Food Agric; 2011 Sep; 91(12):2241-6. PubMed ID: 21618545
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Meat flavor generation from different composition patterns of initial Maillard stage intermediates formed in heated cysteine-xylose-glycine reaction systems.
    Zhao J; Wang T; Xie J; Xiao Q; Du W; Wang Y; Cheng J; Wang S
    Food Chem; 2019 Feb; 274():79-88. PubMed ID: 30373010
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alkylpyrazines and other volatiles in cocoa liquors at pH 5 to 8, by Selected Ion Flow Tube-Mass Spectrometry (SIFT-MS).
    Huang Y; Barringer SA
    J Food Sci; 2010; 75(1):C121-7. PubMed ID: 20492142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aqueous Preparation of Maillard Reaction Intermediate from Glutathione and Xylose and its Volatile Formation During Thermal Treatment.
    Sun F; Cui H; Zhan H; Xu M; Hayat K; Tahir MU; Hussain S; Zhang X; Ho CT
    J Food Sci; 2019 Dec; 84(12):3584-3593. PubMed ID: 31721210
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Promoted Formation of Pyrazines and Sulfur-Containing Volatile Compounds through Interaction of Extra-Added Glutathione or Its Constituent Amino Acids and Secondary Products of Thermally Degraded
    Feng L; Cui H; Chen P; Hayat K; Zhang X; Ho CT
    J Agric Food Chem; 2022 Jul; 70(29):9095-9105. PubMed ID: 35838405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.