BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 10956148)

  • 1. Influence of pyrolytic and aqueous-phase reactions on the mechanism of formation of Maillard products.
    Wnorowski A; Yaylayan VA
    J Agric Food Chem; 2000 Aug; 48(8):3549-54. PubMed ID: 10956148
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal decomposition of specifically phosphorylated D-glucoses and their role in the control of the Maillard reaction.
    Yaylayan VA; Machiels D; Istasse L
    J Agric Food Chem; 2003 May; 51(11):3358-66. PubMed ID: 12744667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of hydroxycinnamic acid-maillard reaction products in low-moisture baking model systems.
    Jiang D; Chiaro C; Maddali P; Prabhu KS; Peterson DG
    J Agric Food Chem; 2009 Nov; 57(21):9932-43. PubMed ID: 19817410
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reactivity of epicatechin in aqueous glycine and glucose maillard reaction models: quenching of C2, C3, and C4 sugar fragments.
    Totlani VM; Peterson DG
    J Agric Food Chem; 2005 May; 53(10):4130-5. PubMed ID: 15884850
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generation and the fate of C2, C3, and C4 reactive fragments formed in Maillard model systems of [13C]glucose and [13C]glycine or proline.
    Yaylayan VA; Keyhani A; Huygues-Despointes A
    Adv Exp Med Biol; 1998; 434():237-44. PubMed ID: 9598203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reinvestigation of the reaction between 2-furancarboxaldehyde and 4-hydroxy-5-methyl-3(2H)-furanone.
    Ravagli A; Boschin G; Scaglioni L; Arnoldi A
    J Agric Food Chem; 1999 Dec; 47(12):4962-9. PubMed ID: 10606559
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation of aroma compounds from ribose and cysteine during the Maillard reaction.
    Cerny C; Davidek T
    J Agric Food Chem; 2003 Apr; 51(9):2714-21. PubMed ID: 12696962
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of furanone, pyranone, and new heterocyclic colored compounds from sugar-glycine model Maillard systems.
    Ames JM; Bailey RG; Mann J
    J Agric Food Chem; 1999 Feb; 47(2):438-43. PubMed ID: 10563913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. D-Galacturonic Acid: A Highly Reactive Compound in Nonenzymatic Browning. 2. Formation of Amino-Specific Degradation Products.
    Wegener S; Bornik MA; Kroh LW
    J Agric Food Chem; 2015 Jul; 63(28):6457-65. PubMed ID: 26111613
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of epicatechin reactions on the mechanisms of Maillard product formation in low moisture model systems.
    Totlani VM; Peterson DG
    J Agric Food Chem; 2007 Jan; 55(2):414-20. PubMed ID: 17227073
    [TBL] [Abstract][Full Text] [Related]  

  • 11. D-Galacturonic acid as a highly reactive compound in nonenzymatic browning. 1. Formation of browning active degradation products.
    Bornik MA; Kroh LW
    J Agric Food Chem; 2013 Apr; 61(14):3494-500. PubMed ID: 23495718
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of 2,5-dimethyl-4-hydroxy-3(2H)-furanone through methylglyoxal: a Maillard reaction intermediate.
    Wang Y; Ho CT
    J Agric Food Chem; 2008 Aug; 56(16):7405-9. PubMed ID: 18593173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Origin of carbohydrate degradation products in L-Alanine/D-[(13)C]glucose model systems.
    Yaylayan VA; Keyhani A
    J Agric Food Chem; 2000 Jun; 48(6):2415-9. PubMed ID: 10888560
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of pyrazines and a novel pyrrole in Maillard model systems of 1,3-dihydroxyacetone and 2-oxopropanal.
    Adams A; Polizzi V; van Boekel M; De Kimpe N
    J Agric Food Chem; 2008 Mar; 56(6):2147-53. PubMed ID: 18318495
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of moisture content on the enolization products formation in glucose-proline Maillard reaction models.
    Li H; Yang FH; Zhang WC; Zhang ZJ; Yu SJ
    J Sci Food Agric; 2022 Dec; 102(15):7249-7258. PubMed ID: 35731714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of new heterocyclic nitrogen compounds from glucose-lysine and xylose-lysine maillard model systems.
    Bailey RG; Ames JM; Mann J
    J Agric Food Chem; 2000 Dec; 48(12):6240-6. PubMed ID: 11312797
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Maillard reaction of D-glucose: identification of a colored product with conjugated pyrrole and furanone rings.
    Lerche H; Pischetsrieder M; Severin T
    J Agric Food Chem; 2002 May; 50(10):2984-6. PubMed ID: 11982429
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Double Schiff base adducts of 2,3-butanedione with glycine: formation of pyrazine rings with the participation of amino acid carbon atoms.
    Guerra PV; Yaylayan VA
    J Agric Food Chem; 2012 Nov; 60(45):11440-5. PubMed ID: 23106172
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonvolatile oxidation products of glucose in Maillard model systems: formation of saccharinic and aldonic acids and their corresponding lactones.
    Haffenden LJ; Yaylayan VA
    J Agric Food Chem; 2008 Mar; 56(5):1638-43. PubMed ID: 18251497
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antioxidative Maillard Reaction Products Generated in Processed Aged Garlic Extract.
    Wakamatsu J; Stark TD; Hofmann T
    J Agric Food Chem; 2019 Feb; 67(8):2190-2200. PubMed ID: 30715866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.