BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

39 related articles for article (PubMed ID: 10956238)

  • 1. Behavioral feedback regulation of circadian rhythm phase angle in light-dark entrained mice.
    Mistlberger RE; Holmes MM
    Am J Physiol Regul Integr Comp Physiol; 2000 Sep; 279(3):R813-21. PubMed ID: 10956238
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lengthened circadian rhythms in mice with self-controlled ambient light intensity.
    Ogasawara J; Matsumoto N; Takeuchi Y; Yamashiro K; Yasui M; Ikegaya Y
    Sci Rep; 2024 Apr; 14(1):7778. PubMed ID: 38565587
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of testosterone on circadian rhythmicity in old mice.
    Hashimoto A; Fujiki S; Nakamura W; Nakamura TJ
    J Physiol Sci; 2019 Sep; 69(5):791-798. PubMed ID: 31301005
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Field and laboratory studies provide insights into the meaning of day-time activity in a subterranean rodent (Ctenomys aff. knighti), the tuco-tuco.
    Tomotani BM; Flores DE; Tachinardi P; Paliza JD; Oda GA; Valentinuzzi VS
    PLoS One; 2012; 7(5):e37918. PubMed ID: 22649565
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ethanol consumption in mice: relationships with circadian period and entrainment.
    Trujillo JL; Do DT; Grahame NJ; Roberts AJ; Gorman MR
    Alcohol; 2011 Mar; 45(2):147-59. PubMed ID: 20880659
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nocturnal to Diurnal Switches with Spontaneous Suppression of Wheel-Running Behavior in a Subterranean Rodent.
    Tachinardi P; Tøien Ø; Valentinuzzi VS; Buck CL; Oda GA
    PLoS One; 2015; 10(10):e0140500. PubMed ID: 26460828
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alcohol and lithium have opposing effects on the period and phase of the behavioral free-running activity rhythm.
    Nascimento NF; Carlson KN; Amaral DN; Logan RW; Seggio JA
    Alcohol; 2015 Jun; 49(4):367-76. PubMed ID: 25850902
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Behavioral and Thermoregulatory Responses to Changes in Ambient Temperature and Wheel Running Availability in
    Bano-Otalora B; Rol MA; Madrid JA
    Front Integr Neurosci; 2021; 15():684988. PubMed ID: 34276317
    [No Abstract]   [Full Text] [Related]  

  • 9. Simultaneous assessment of cognitive function, circadian rhythm, and spontaneous activity in aging mice.
    Logan S; Owen D; Chen S; Chen WJ; Ungvari Z; Farley J; Csiszar A; Sharpe A; Loos M; Koopmans B; Richardson A; Sonntag WE
    Geroscience; 2018 Apr; 40(2):123-137. PubMed ID: 29687240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. "Time sweet time": circadian characterization of galectin-1 null mice.
    Casiraghi LP; Croci DO; Poirier F; Rabinovich GA; Golombek DA
    J Circadian Rhythms; 2010 Apr; 8():4. PubMed ID: 20403179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mapping behaviorally relevant light pollution levels to improve urban habitat planning.
    Schirmer AE; Gallemore C; Liu T; Magle S; DiNello E; Ahmed H; Gilday T
    Sci Rep; 2019 Aug; 9(1):11925. PubMed ID: 31417105
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dietary restriction modulates ultradian rhythms and autocorrelation properties in mice behavior.
    Kembro JM; Flesia AG; Acosta-Rodríguez VA; Takahashi JS; Nieto PS
    Commun Biol; 2024 Mar; 7(1):303. PubMed ID: 38461321
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differences in Photic Entrainment of Circadian Locomotor Activity Between Lean and Obese Volcano Mice (
    Miranda-Anaya M; Luna-Moreno D; Carmona-Castro A; Díaz-Muñoz M
    J Circadian Rhythms; 2017 Jan; 15():1. PubMed ID: 30210555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Free access to a running-wheel advances the phase of behavioral and physiological circadian rhythms and peripheral molecular clocks in mice.
    Yasumoto Y; Nakao R; Oishi K
    PLoS One; 2015; 10(1):e0116476. PubMed ID: 25615603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Voluntary scheduled exercise alters diurnal rhythms of behaviour, physiology and gene expression in wild-type and vasoactive intestinal peptide-deficient mice.
    Schroeder AM; Truong D; Loh DH; Jordan MC; Roos KP; Colwell CS
    J Physiol; 2012 Dec; 590(23):6213-26. PubMed ID: 22988135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unwinding the molecular basis of interval and circadian timing.
    Agostino PV; Golombek DA; Meck WH
    Front Integr Neurosci; 2011; 5():64. PubMed ID: 22022309
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A role for the habenula in the regulation of locomotor activity cycles.
    Paul MJ; Indic P; Schwartz WJ
    Eur J Neurosci; 2011 Aug; 34(3):478-88. PubMed ID: 21777302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Behavioral and genetic dissection of a mouse model for advanced sleep phase syndrome.
    Jiang P; Striz M; Wisor JP; O'Hara BF
    Sleep; 2011 Jan; 34(1):39-48. PubMed ID: 21203370
    [TBL] [Abstract][Full Text] [Related]  

  • 19. BK channels regulate spontaneous action potential rhythmicity in the suprachiasmatic nucleus.
    Kent J; Meredith AL
    PLoS One; 2008; 3(12):e3884. PubMed ID: 19060951
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feeding cues alter clock gene oscillations and photic responses in the suprachiasmatic nuclei of mice exposed to a light/dark cycle.
    Mendoza J; Graff C; Dardente H; Pevet P; Challet E
    J Neurosci; 2005 Feb; 25(6):1514-22. PubMed ID: 15703405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 2.