BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 10956355)

  • 1. beta-adrenergic blockade augments glucose utilization in horses during graded exercise.
    Geor RJ; Hinchcliff KW; Sams RA
    J Appl Physiol (1985); 2000 Sep; 89(3):1086-98. PubMed ID: 10956355
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Epinephrine inhibits exogenous glucose utilization in exercising horses.
    Geor RJ; Hinchcliff KW; McCutcheon LJ; Sams RA
    J Appl Physiol (1985); 2000 May; 88(5):1777-90. PubMed ID: 10797142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of beta-adrenergic receptor stimulation and blockade on substrate metabolism during submaximal exercise.
    Mora-Rodriguez R; Hodgkinson BJ; Byerley LO; Coyle EF
    Am J Physiol Endocrinol Metab; 2001 May; 280(5):E752-60. PubMed ID: 11287358
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glucose infusion attenuates endogenous glucose production and enhances glucose use of horses during exercise.
    Geor RJ; Hinchcliff KW; Sams RA
    J Appl Physiol (1985); 2000 May; 88(5):1765-76. PubMed ID: 10797141
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Manipulation of dietary carbohydrate and muscle glycogen affects glucose uptake during exercise when fat oxidation is impaired by beta-adrenergic blockade.
    Zderic TW; Schenk S; Davidson CJ; Byerley LO; Coyle EF
    Am J Physiol Endocrinol Metab; 2004 Dec; 287(6):E1195-201. PubMed ID: 15315908
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glucoregulation during and after intense exercise: effects of beta-adrenergic blockade in subjects with type 1 diabetes mellitus.
    Sigal RJ; Fisher SJ; Halter JB; Vranic M; Marliss EB
    J Clin Endocrinol Metab; 1999 Nov; 84(11):3961-71. PubMed ID: 10566635
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glucose kinetics during prolonged exercise in highly trained human subjects: effect of glucose ingestion.
    Jeukendrup AE; Raben A; Gijsen A; Stegen JH; Brouns F; Saris WH; Wagenmakers AJ
    J Physiol; 1999 Mar; 515 ( Pt 2)(Pt 2):579-89. PubMed ID: 10050023
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic response to carbohydrate ingestion during exercise in males and females.
    Wallis GA; Dawson R; Achten J; Webber J; Jeukendrup AE
    Am J Physiol Endocrinol Metab; 2006 Apr; 290(4):E708-15. PubMed ID: 16278245
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of glucose turnover during exercise in pancreatectomized, totally insulin-deficient dogs. Effects of beta-adrenergic blockade.
    Bjorkman O; Miles P; Wasserman D; Lickley L; Vranic M
    J Clin Invest; 1988 Jun; 81(6):1759-67. PubMed ID: 3290252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of glucose kinetics during intense exercise in humans: effects of alpha- and beta-adrenergic blockade.
    Howlett KF; Watt MJ; Hargreaves M; Febbraio MA
    Metabolism; 2003 Dec; 52(12):1615-20. PubMed ID: 14669166
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of hepatic alpha- and beta-adrenergic receptor stimulation on hepatic glucose production during heavy exercise.
    Coker RH; Krishna MG; Lacy DB; Bracy DP; Wasserman DH
    Am J Physiol; 1997 Nov; 273(5):E831-8. PubMed ID: 9374667
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of beta-adrenergic mechanisms during exercise in poorly controlled diabetes.
    Wasserman DH; Lickley HL; Vranic M
    J Appl Physiol (1985); 1985 Oct; 59(4):1282-9. PubMed ID: 2865246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glucose kinetics and substrate oxidation during exercise in the follicular and luteal phases.
    Zderic TW; Coggan AR; Ruby BC
    J Appl Physiol (1985); 2001 Feb; 90(2):447-53. PubMed ID: 11160041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic and hormonal responses to adrenoceptor antagonists in 48-hour-starved exercising rats.
    Benthem L; van der Leest J; Steffens AB; Zijlstra WG
    Metabolism; 1995 Oct; 44(10):1332-9. PubMed ID: 7476294
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of epinephrine on glucose disposal during exercise in humans: role of muscle glycogen.
    Watt MJ; Hargreaves M
    Am J Physiol Endocrinol Metab; 2002 Sep; 283(3):E578-83. PubMed ID: 12169452
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of exercise carbohydrate metabolism by estrogen and progesterone in women.
    D'Eon TM; Sharoff C; Chipkin SR; Grow D; Ruby BC; Braun B
    Am J Physiol Endocrinol Metab; 2002 Nov; 283(5):E1046-55. PubMed ID: 12376334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hormonal and metabolic responses to maintained hyperglycemia during prolonged exercise.
    MacLaren DP; Reilly T; Campbell IT; Hopkin C
    J Appl Physiol (1985); 1999 Jul; 87(1):124-31. PubMed ID: 10409566
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glucagon and plasma catecholamines during beta-receptor blockade in exercising man.
    Galbo H; Holst JJ; Christensen NJ; Hilsted J
    J Appl Physiol; 1976 Jun; 40(6):855-63. PubMed ID: 931921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prevention of overt hypoglycemia during exercise: stimulation of endogenous glucose production independent of hepatic catecholamine action and changes in pancreatic hormone concentration.
    Coker RH; Koyama Y; Denny JC; Camacho RC; Lacy DB; Wasserman DH
    Diabetes; 2002 May; 51(5):1310-8. PubMed ID: 11978626
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The direct effects of catecholamines on hepatic glucose production occur via alpha(1)- and beta(2)-receptors in the dog.
    Chu CA; Sindelar DK; Igawa K; Sherck S; Neal DW; Emshwiller M; Cherrington AD
    Am J Physiol Endocrinol Metab; 2000 Aug; 279(2):E463-73. PubMed ID: 10913048
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.