BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 10956593)

  • 1. Rapid identification of Enterobacteriaceae using a novel 23S rRNA-targeted oligonucleotide probe.
    Bohnert J; Hübner B; Botzenhart K
    Int J Hyg Environ Health; 2000 Mar; 203(1):77-82. PubMed ID: 10956593
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oligonucleotide probe for detecting Enterobacteriaceae by in situ hybridization.
    Ootsubo M; Shimizu T; Tanaka R; Sawabe T; Tajima K; Yoshimizu M; Ezura Y; Ezaki T; Oyaizu H
    J Appl Microbiol; 2002; 93(1):60-8. PubMed ID: 12067375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ accessibility of Escherichia coli 23S rRNA to fluorescently labeled oligonucleotide probes.
    Fuchs BM; Syutsubo K; Ludwig W; Amann R
    Appl Environ Microbiol; 2001 Feb; 67(2):961-8. PubMed ID: 11157269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification and characterization of an intervening sequence within the 23S ribosomal RNA genes of Edwardsiella ictaluri.
    Zhang Y; Arias CR
    Syst Appl Microbiol; 2007 Mar; 30(2):93-101. PubMed ID: 16697134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of 16S-23S intergenic spacer regions of the rRNA operons in Edwardsiella ictaluri and Edwardsiella tarda isolates from fish.
    Panangala VS; van Santen VL; Shoemaker CA; Klesius PH
    J Appl Microbiol; 2005; 99(3):657-69. PubMed ID: 16108808
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved detection of Salmonella spp. in foods by fluorescent in situ hybridization with 23S rRNA probes: a comparison with conventional culture methods.
    Fang Q; Brockmann S; Botzenhart K; Wiedenmann A
    J Food Prot; 2003 May; 66(5):723-31. PubMed ID: 12747677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of a fluorescence-labelled oligonucleotide probe targeting 23S rRNA for in situ detection of Salmonella serovars in paraffin-embedded tissue sections and their rapid identification in bacterial smears.
    Nordentoft S; Christensen H; Wegener HC
    J Clin Microbiol; 1997 Oct; 35(10):2642-8. PubMed ID: 9316923
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative sequence analysis and oligonucleotide probe design based on 23S rRNA genes of Alphaproteobacteria from North Sea bacterioplankton.
    Peplies J; Glöckner FO; Amann R; Ludwig W
    Syst Appl Microbiol; 2004 Sep; 27(5):573-80. PubMed ID: 15490559
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and application of oligonucleotide probes for in situ detection of thermotolerant Campylobacter in chicken faecal and liver samples.
    Schmid MW; Lehner A; Stephan R; Schleifer KH; Meier H
    Int J Food Microbiol; 2005 Nov; 105(2):245-55. PubMed ID: 16061298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monitoring of microbial diversity by fluorescence in situ hybridization and fluorescence spectrometry.
    Ivanov V; Tay ST; Tay JH
    Water Sci Technol; 2003; 47(5):133-8. PubMed ID: 12701918
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Seven-hour fluorescence in situ hybridization technique for enumeration of Enterobacteriaceae in food and environmental water sample.
    Ootsubo M; Shimizu T; Tanaka R; Sawabe T; Tajima K; Ezura Y
    J Appl Microbiol; 2003; 95(6):1182-90. PubMed ID: 14632990
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescent in situ hybridization and flow cytometry as tools to evaluate the treatments for the control of slime-forming enterobacteria in paper mills.
    Torres CE; Gibello A; Nande M; Martin M; Blanco A
    Appl Microbiol Biotechnol; 2008 Apr; 78(5):889-97. PubMed ID: 18247026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of fluorescent in situ hybridization to evidence the presence of Helicobacter pylori in water.
    Moreno Y; Ferrús MA; Alonso JL; Jiménez A; Hernández J
    Water Res; 2003 May; 37(9):2251-6. PubMed ID: 12691913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A detection method for Legionella spp in (cooling) water: fluorescent in situ hybridisation (FISH) on whole bacteria.
    Declerck P; Verelst L; Duvivier L; Van Damme A; Ollevier F
    Water Sci Technol; 2003; 47(3):143-6. PubMed ID: 12639019
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of iron-depositing Pedomicrobium species in native biofilms from the Odertal National Park by a new, specific FISH probe.
    Braun B; Richert I; Szewzyk U
    J Microbiol Methods; 2009 Oct; 79(1):37-43. PubMed ID: 19638289
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and application of two oligonucleotide probes for the identification of Geodermatophilaceae strains using fluorescence in situ hybridization (FISH).
    Urzì C; La Cono V; Stackebrandt E
    Environ Microbiol; 2004 Jul; 6(7):678-85. PubMed ID: 15186346
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of a plasmid-based 16S-23S rDNA intergenic spacer region array for analysis of microbial diversity in industrial wastewater.
    Cook KL; Layton AC; Dionisi HM; Fleming JT; Sayler GS
    J Microbiol Methods; 2004 Apr; 57(1):79-93. PubMed ID: 15003691
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of nucleobase-specific fluorescence quenching on in situ hybridization with rRNA-targeted oligonucleotide probes.
    Behrens S; Fuchs BM; Amann R
    Syst Appl Microbiol; 2004 Sep; 27(5):565-72. PubMed ID: 15490558
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ca
    Haruta S; Iino T; Ohkuma M; Suzuki KI; Igarashi Y
    Microbes Environ; 2017 Jun; 32(2):142-146. PubMed ID: 28515389
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Laser scanning detection of FISH-labelled Escherichia coli from water samples.
    Lepeuple S; Delabre K; Gilouppe S; Intertaglia L; de Roubin MR
    Water Sci Technol; 2003; 47(3):123-9. PubMed ID: 12639016
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.