BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 10956662)

  • 1. Residues and mechanisms for slow activation and Ba2+ block of the cardiac muscarinic K+ channel, Kir3.1/Kir3.4.
    Lancaster MK; Dibb KM; Quinn CC; Leach R; Lee JK; Findlay JB; Boyett MR
    J Biol Chem; 2000 Nov; 275(46):35831-9. PubMed ID: 10956662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of extracellular cations on the inward rectifying K+ channels Kir2.1 and Kir3.1/Kir3.4.
    Owen JM; Quinn CC; Leach R; Findlay JB; Boyett MR
    Exp Physiol; 1999 May; 84(3):471-88. PubMed ID: 10362846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The selectivity filter may act as the agonist-activated gate in the G protein-activated Kir3.1/Kir3.4 K+ channel.
    Claydon TW; Makary SY; Dibb KM; Boyett MR
    J Biol Chem; 2003 Dec; 278(50):50654-63. PubMed ID: 14525972
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of regions that regulate the expression and activity of G protein-gated inward rectifier K+ channels in Xenopus oocytes.
    Stevens EB; Woodward R; Ho IH; Murrell-Lagnado R
    J Physiol; 1997 Sep; 503 ( Pt 3)(Pt 3):547-62. PubMed ID: 9379410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular basis of ion selectivity, block, and rectification of the inward rectifier Kir3.1/Kir3.4 K(+) channel.
    Dibb KM; Rose T; Makary SY; Claydon TW; Enkvetchakul D; Leach R; Nichols CG; Boyett MR
    J Biol Chem; 2003 Dec; 278(49):49537-48. PubMed ID: 14504281
    [TBL] [Abstract][Full Text] [Related]  

  • 6. K+ activation of kir3.1/kir3.4 and kv1.4 K+ channels is regulated by extracellular charges.
    Claydon TW; Makary SY; Dibb KM; Boyett MR
    Biophys J; 2004 Oct; 87(4):2407-18. PubMed ID: 15454439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of Ba(2+) block of a mouse inwardly rectifying K+ channel: differential contribution by two discrete residues.
    Alagem N; Dvir M; Reuveny E
    J Physiol; 2001 Jul; 534(Pt. 2):381-93. PubMed ID: 11454958
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A conserved arginine residue in the pore region of an inward rectifier K channel (IRK1) as an external barrier for cationic blockers.
    Sabirov RZ; Tominaga T; Miwa A; Okada Y; Oiki S
    J Gen Physiol; 1997 Dec; 110(6):665-77. PubMed ID: 9382895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TrkB activation by brain-derived neurotrophic factor inhibits the G protein-gated inward rectifier Kir3 by tyrosine phosphorylation of the channel.
    Rogalski SL; Appleyard SM; Pattillo A; Terman GW; Chavkin C
    J Biol Chem; 2000 Aug; 275(33):25082-8. PubMed ID: 10833508
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A difference in inward rectification and polyamine block and permeation between the Kir2.1 and Kir3.1/Kir3.4 K+ channels.
    Makary SM; Claydon TW; Enkvetchakul D; Nichols CG; Boyett MR
    J Physiol; 2005 Nov; 568(Pt 3):749-66. PubMed ID: 16109731
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ion selectivity filter regulates local anesthetic inhibition of G-protein-gated inwardly rectifying K+ channels.
    Slesinger PA
    Biophys J; 2001 Feb; 80(2):707-18. PubMed ID: 11159438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanosensitivity of the cardiac muscarinic potassium channel. A novel property conferred by Kir3.4 subunit.
    Ji S; John SA; Lu Y; Weiss JN
    J Biol Chem; 1998 Jan; 273(3):1324-8. PubMed ID: 9430664
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time resolved kinetics of direct G beta 1 gamma 2 interactions with the carboxyl terminus of Kir3.4 inward rectifier K+ channel subunits.
    Doupnik CA; Dessauer CW; Slepak VZ; Gilman AG; Davidson N; Lester HA
    Neuropharmacology; 1996; 35(7):923-31. PubMed ID: 8938723
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogen sulfide inhibits Kir2 and Kir3 channels by decreasing sensitivity to the phospholipid phosphatidylinositol 4,5-bisphosphate (PIP
    Ha J; Xu Y; Kawano T; Hendon T; Baki L; Garai S; Papapetropoulos A; Thakur GA; Plant LD; Logothetis DE
    J Biol Chem; 2018 Mar; 293(10):3546-3561. PubMed ID: 29317494
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The neural cell adhesion molecule regulates cell-surface delivery of G-protein-activated inwardly rectifying potassium channels via lipid rafts.
    Delling M; Wischmeyer E; Dityatev A; Sytnyk V; Veh RW; Karschin A; Schachner M
    J Neurosci; 2002 Aug; 22(16):7154-64. PubMed ID: 12177211
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cs+ block of the cardiac muscarinic K+ channel, GIRK1/GIRK4, is not dependent on the aspartate residue at position 173.
    Dibb KM; Leach R; Lancaster MK; Findlay JB; Boyett MR
    Pflugers Arch; 2000 Sep; 440(5):740-4. PubMed ID: 11007316
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional properties of a truncated recombinant GIRK5 potassium channel.
    Salvador C; Martinez M; Mora SI; Egido W; Farias JM; Gamba G; Escobar LI
    Biochim Biophys Acta; 2001 May; 1512(1):135-47. PubMed ID: 11334631
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unitary conductance variation in Kir2.1 and in cardiac inward rectifier potassium channels.
    Picones A; Keung E; Timpe LC
    Biophys J; 2001 Oct; 81(4):2035-49. PubMed ID: 11566776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. G-protein-gated potassium channels containing Kir3.2 and Kir3.3 subunits mediate the acute inhibitory effects of opioids on locus ceruleus neurons.
    Torrecilla M; Marker CL; Cintora SC; Stoffel M; Williams JT; Wickman K
    J Neurosci; 2002 Jun; 22(11):4328-34. PubMed ID: 12040038
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel gating mechanism of polyamine block in the strong inward rectifier K channel Kir2.1.
    Lee JK; John SA; Weiss JN
    J Gen Physiol; 1999 Apr; 113(4):555-64. PubMed ID: 10102936
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.