These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 10957646)

  • 1. Identification of a potential metal cation-pi binding site in the structure of a thermophilic Bacillus stearothermophilus triosephosphate isomerase mutant.
    Wouters J; Maes D
    Acta Crystallogr D Biol Crystallogr; 2000 Sep; 56(Pt 9):1201-3. PubMed ID: 10957646
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structure of recombinant triosephosphate isomerase from Bacillus stearothermophilus. An analysis of potential thermostability factors in six isomerases with known three-dimensional structures points to the importance of hydrophobic interactions.
    Delboni LF; Mande SC; Rentier-Delrue F; Mainfroid V; Turley S; Vellieux FM; Martial JA; Hol WG
    Protein Sci; 1995 Dec; 4(12):2594-604. PubMed ID: 8580851
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequence of the triosephosphate isomerase-encoding gene isolated from the thermophile Bacillus stearothermophilus.
    Rentier-Delrue F; Moyens S; Lion M; Martial JA
    Gene; 1993 Nov; 134(1):137-8. PubMed ID: 8244026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lys13 plays a crucial role in the functional adaptation of the thermophilic triose-phosphate isomerase from Bacillus stearothermophilus to high temperatures.
    Alvarez M; Wouters J; Maes D; Mainfroid V; Rentier-Delrue F; Wyns L; Depiereux E; Martial JA
    J Biol Chem; 1999 Jul; 274(27):19181-7. PubMed ID: 10383424
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural insights into N-terminal to C-terminal interactions and implications for thermostability of a (β/α)8-triosephosphate isomerase barrel enzyme.
    Mahanta P; Bhardwaj A; Kumar K; Reddy VS; Ramakumar S
    FEBS J; 2015 Sep; 282(18):3543-55. PubMed ID: 26102498
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solution-state NMR investigations of triosephosphate isomerase active site loop motion: ligand release in relation to active site loop dynamics.
    Rozovsky S; Jogl G; Tong L; McDermott AE
    J Mol Biol; 2001 Jun; 310(1):271-80. PubMed ID: 11419952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The crystal structure of an engineered monomeric triosephosphate isomerase, monoTIM: the correct modelling of an eight-residue loop.
    Borchert TV; Abagyan R; Kishan KV; Zeelen JP; Wierenga RK
    Structure; 1993 Nov; 1(3):205-13. PubMed ID: 16100954
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cloning and overexpression of the triosephosphate isomerase genes from psychrophilic and thermophilic bacteria. Structural comparison of the predicted protein sequences.
    Rentier-Delrue F; Mande SC; Moyens S; Terpstra P; Mainfroid V; Goraj K; Lion M; Hol WG; Martial JA
    J Mol Biol; 1993 Jan; 229(1):85-93. PubMed ID: 8421318
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cation-pi (Na+-Trp) interactions in the crystal structure of tetragonal lysozyme.
    Wouters J
    Protein Sci; 1998 Nov; 7(11):2472-5. PubMed ID: 9828016
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structure of recombinant human triosephosphate isomerase at 2.8 A resolution. Triosephosphate isomerase-related human genetic disorders and comparison with the trypanosomal enzyme.
    Mande SC; Mainfroid V; Kalk KH; Goraj K; Martial JA; Hol WG
    Protein Sci; 1994 May; 3(5):810-21. PubMed ID: 8061610
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure-function relationships in Gan42B, an intracellular GH42 β-galactosidase from Geobacillus stearothermophilus.
    Solomon HV; Tabachnikov O; Lansky S; Salama R; Feinberg H; Shoham Y; Shoham G
    Acta Crystallogr D Biol Crystallogr; 2015 Dec; 71(Pt 12):2433-48. PubMed ID: 26627651
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of a buried cysteine-to-serine mutation on yeast triosephosphate isomerase structure and stability.
    Hernández-Santoyo A; Domínguez-Ramírez L; Reyes-López CA; González-Mondragón E; Hernández-Arana A; Rodríguez-Romero A
    Int J Mol Sci; 2012; 13(8):10010-10021. PubMed ID: 22949845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unraveling the mechanisms of tryptophan fluorescence quenching in the triosephosphate isomerase from Giardia lamblia.
    Hernández-Alcántara G; Rodríguez-Romero A; Reyes-Vivas H; Peon J; Cabrera N; Ortiz C; Enríquez-Flores S; De la Mora-De la Mora I; López-Velázquez G
    Biochim Biophys Acta; 2008 Nov; 1784(11):1493-500. PubMed ID: 18620084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unusual fluorescence of W168 in Plasmodium falciparum triosephosphate isomerase, probed by single-tryptophan mutants.
    Pattanaik P; Ravindra G; Sengupta C; Maithal K; Balaram P; Balaram H
    Eur J Biochem; 2003 Feb; 270(4):745-56. PubMed ID: 12581214
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing the role of highly conserved residues in triosephosphate isomerase--analysis of site specific mutants at positions 64 and 75 in the Plasmodial enzyme.
    Bandyopadhyay D; Murthy MR; Balaram H; Balaram P
    FEBS J; 2015 Oct; 282(20):3863-82. PubMed ID: 26206206
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stabilization of human triosephosphate isomerase by improvement of the stability of individual alpha-helices in dimeric as well as monomeric forms of the protein.
    Mainfroid V; Mande SC; Hol WG; Martial JA; Goraj K
    Biochemistry; 1996 Apr; 35(13):4110-7. PubMed ID: 8672446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Subunit interface mutation disrupting an aromatic cluster in Plasmodium falciparum triosephosphate isomerase: effect on dimer stability.
    Maithal K; Ravindra G; Nagaraj G; Singh SK; Balaram H; Balaram P
    Protein Eng; 2002 Jul; 15(7):575-84. PubMed ID: 12200540
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The structural basis for pseudoreversion of the E165D lesion by the secondary S96P mutation in triosephosphate isomerase depends on the positions of active site water molecules.
    Komives EA; Lougheed JC; Liu K; Sugio S; Zhang Z; Petsko GA; Ringe D
    Biochemistry; 1995 Oct; 34(41):13612-21. PubMed ID: 7577950
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Revisiting the mechanism of the triosephosphate isomerase reaction: the role of the fully conserved glutamic acid 97 residue.
    Samanta M; Murthy MR; Balaram H; Balaram P
    Chembiochem; 2011 Aug; 12(12):1886-96. PubMed ID: 21671330
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural effects of a dimer interface mutation on catalytic activity of triosephosphate isomerase. The role of conserved residues and complementary mutations.
    Banerjee M; Balaram H; Balaram P
    FEBS J; 2009 Aug; 276(15):4169-83. PubMed ID: 19583769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.