BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 10958421)

  • 1. Experimental and finite element study of a human mandible.
    Vollmer D; Meyer U; Joos U; Vègh A; Piffko J
    J Craniomaxillofac Surg; 2000 Apr; 28(2):91-6. PubMed ID: 10958421
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Finite element analysis of the human mandible at 3 different stages of life.
    Bujtár P; Sándor GK; Bojtos A; Szucs A; Barabás J
    Oral Surg Oral Med Oral Pathol Oral Radiol Endod; 2010 Sep; 110(3):301-9. PubMed ID: 20435491
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Experimental and finite-element models for the assessment of mandibular deformation under mechanical loading].
    Meyer U; Vollmer D; Homann C; Schuon R; Benthaus S; Végh A; Felszegi E; Joos U; Piffkò J
    Mund Kiefer Gesichtschir; 2000 Jan; 4(1):14-20. PubMed ID: 10662914
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomechanics of the mandible: Part II. Development of a 3-dimensional finite element model to study mandibular functional deformation in subjects treated with dental implants.
    Al-Sukhun J; Kelleway J
    Int J Oral Maxillofac Implants; 2007; 22(3):455-66. PubMed ID: 17622013
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional modelling and finite element analysis of the human mandible during clenching.
    Choi AH; Ben-Nissan B; Conway RC
    Aust Dent J; 2005 Mar; 50(1):42-8. PubMed ID: 15881305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dental application of novel finite element analysis software for three-dimensional finite element modeling of a dentulous mandible from its computed tomography images.
    Nakamura K; Tajima K; Chen KK; Nagamatsu Y; Kakigawa H; Masumi SI
    Proc Inst Mech Eng H; 2013 Dec; 227(12):1312-8. PubMed ID: 24077258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of different inter-implant distances on the stress distribution around endosseous implants in posterior mandible: a 3D finite element analysis.
    Simşek B; Erkmen E; Yilmaz D; Eser A
    Med Eng Phys; 2006 Apr; 28(3):199-213. PubMed ID: 15979921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomechanical evaluation of mandibular midline distraction osteogenesis by using the finite element method.
    Basciftci FA; Korkmaz HH; Işeri H; Malkoç S
    Am J Orthod Dentofacial Orthop; 2004 Jun; 125(6):706-15. PubMed ID: 15179395
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Finite-element analysis of 3 situations of trauma in the human edentulous mandible.
    Santos LS; Rossi AC; Freire AR; Matoso RI; Caria PH; Prado FB
    J Oral Maxillofac Surg; 2015 Apr; 73(4):683-91. PubMed ID: 25577458
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computerized analysis of resorbable polymer plates and screws for the rigid fixation of mandibular angle fractures.
    Cox T; Kohn MW; Impelluso T
    J Oral Maxillofac Surg; 2003 Apr; 61(4):481-7; discussion 487-8. PubMed ID: 12684967
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparative evaluation of mandibular finite element models with different lengths and elements for implant biomechanics.
    Teixeira ER; Sato Y; Akagawa Y; Shindoi N
    J Oral Rehabil; 1998 Apr; 25(4):299-303. PubMed ID: 9610858
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stress distribution in mandible and temporomandibular joint by mandibular distraction: a 3-dimensional finite-element analysis.
    Katada H; Arakawa T; Ichimura K; Sueishi K; Sameshima GT
    Bull Tokyo Dent Coll; 2009; 50(4):161-8. PubMed ID: 20179391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A finite element analysis of the stress distribution to the mandible from impact forces with various orientations of third molars.
    Liu YF; Wang R; Baur DA; Jiang XF
    J Zhejiang Univ Sci B; 2018 Jan.; 19(1):38-48. PubMed ID: 29308606
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A three-dimensional computer model of the human mandible in two simulated standard trauma situations.
    Gallas Torreira M; Fernandez JR
    J Craniomaxillofac Surg; 2004 Oct; 32(5):303-7. PubMed ID: 15458672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a finite element model for blast injuries to the pig mandible and a preliminary biomechanical analysis.
    Lei T; Xie L; Tu W; Chen Y; Tan Y
    J Trauma Acute Care Surg; 2012 Oct; 73(4):902-7. PubMed ID: 22902731
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Finite-element-analysis of different screw-diameters in the sagittal split osteotomy of the mandible.
    Maurer P; Holweg S; Schubert J
    J Craniomaxillofac Surg; 1999 Dec; 27(6):365-72. PubMed ID: 10870755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Blast injuries to the human mandible: development of a finite element model and a preliminary finite element analysis.
    Lei T; Xie L; Tu W; Chen Y; Tang Z; Tan Y
    Injury; 2012 Nov; 43(11):1850-5. PubMed ID: 22889532
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional finite element stress analysis of the dentate human mandible.
    Korioth TW; Romilly DP; Hannam AG
    Am J Phys Anthropol; 1992 May; 88(1):69-96. PubMed ID: 1510115
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Consideration of anisotropic elasticity minimizes volumetric rather than shear deformation in human mandible.
    Kober C; Erdmann B; Hellmich C; Sader R; Zeilhofer HF
    Comput Methods Biomech Biomed Engin; 2006 Apr; 9(2):91-101. PubMed ID: 16880160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Micromechanics-based conversion of CT data into anisotropic elasticity tensors, applied to FE simulations of a mandible.
    Hellmich C; Kober C; Erdmann B
    Ann Biomed Eng; 2008 Jan; 36(1):108-22. PubMed ID: 17952601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.