These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 10958421)

  • 41. Evaluating parameters of osseointegrated dental implants using finite element analysis--a two-dimensional comparative study examining the effects of implant diameter, implant shape, and load direction.
    Holmgren EP; Seckinger RJ; Kilgren LM; Mante F
    J Oral Implantol; 1998; 24(2):80-8. PubMed ID: 9835834
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Modeling the human mandible under masticatory loads: which input variables are important?
    Gröning F; Fagan M; O'Higgins P
    Anat Rec (Hoboken); 2012 May; 295(5):853-63. PubMed ID: 22467624
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Comparison of non-linear finite element stress analysis with in vitro strain gauge measurements on a Morse taper implant.
    Iplikçioğlu H; Akça K; Cehreli MC; Sahin S
    Int J Oral Maxillofac Implants; 2003; 18(2):258-65. PubMed ID: 12705305
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Modeling the biomechanics of the mandible: a three-dimensional finite element study.
    Hart RT; Hennebel VV; Thongpreda N; Van Buskirk WC; Anderson RC
    J Biomech; 1992 Mar; 25(3):261-86. PubMed ID: 1564061
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Development and validation of a digital twin of the human lower jaw under impact loading by using non-linear finite element analyses.
    Demir O; Uslan I; Buyuk M; Salamci MU
    J Mech Behav Biomed Mater; 2023 Dec; 148():106207. PubMed ID: 37922761
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Influence of implant number on the biomechanical behaviour of mandibular implant-retained/supported overdentures: a three-dimensional finite element analysis.
    Liu J; Pan S; Dong J; Mo Z; Fan Y; Feng H
    J Dent; 2013 Mar; 41(3):241-9. PubMed ID: 23160036
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Biomechanics studies in dentistry: bioengineering applied in oral implantology.
    Assunção WG; Barão VA; Tabata LF; Gomes EA; Delben JA; dos Santos PH
    J Craniofac Surg; 2009 Jul; 20(4):1173-7. PubMed ID: 19568186
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A comparison of 2D and 3D finite element analysis of a restored tooth.
    Romeed SA; Fok SL; Wilson NH
    J Oral Rehabil; 2006 Mar; 33(3):209-15. PubMed ID: 16512887
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Development and experimental validation of a three-dimensional finite element model of the human scapula.
    Gupta S; van der Helm FC; Sterk JC; van Keulen F; Kaptein BL
    Proc Inst Mech Eng H; 2004; 218(2):127-42. PubMed ID: 15116900
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Modelling subcortical bone in finite element analyses: A validation and sensitivity study in the macaque mandible.
    Panagiotopoulou O; Curtis N; O' Higgins P; Cobb SN
    J Biomech; 2010 May; 43(8):1603-11. PubMed ID: 20176361
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Experimental validation of a finite element model of a human cadaveric tibia.
    Gray HA; Taddei F; Zavatsky AB; Cristofolini L; Gill HS
    J Biomech Eng; 2008 Jun; 130(3):031016. PubMed ID: 18532865
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Finite-element modeling of the anthropoid mandible: the effects of altered boundary conditions.
    Marinescu R; Daegling DJ; Rapoff AJ
    Anat Rec A Discov Mol Cell Evol Biol; 2005 Apr; 283(2):300-9. PubMed ID: 15747352
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Flexural and creep properties of human jaw compact bone for FEA studies.
    Vitins V; Dobelis M; Middleton J; Limbert G; Knets I
    Comput Methods Biomech Biomed Engin; 2003; 6(5-6):299-303. PubMed ID: 14675950
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Modified bone density-dependent orthotropic material model of human mandibular bone.
    Gačnik F; Ren Z; Hren NI
    Med Eng Phys; 2014 Dec; 36(12):1684-92. PubMed ID: 25456399
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Material assignment in finite element modeling: heterogeneous properties of the mandibular bone.
    Xin P; Nie P; Jiang B; Deng S; Hu G; Shen SG
    J Craniofac Surg; 2013 Mar; 24(2):405-10. PubMed ID: 23524703
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Ultimate masticatory force as a criterion in implant selection.
    Demenko V; Linetskiy I; Nesvit K; Shevchenko A
    J Dent Res; 2011 Oct; 90(10):1211-5. PubMed ID: 21810621
    [TBL] [Abstract][Full Text] [Related]  

  • 57. An Investigation of Two Finite Element Modeling Solutions for Biomechanical Simulation Using a Case Study of a Mandibular Bone.
    Liu YF; Fan YY; Dong HY; Zhang JX
    J Biomech Eng; 2017 Dec; 139(12):. PubMed ID: 28816344
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Improving the validation of finite element models with quantitative full-field strain comparisons.
    Gröning F; Bright JA; Fagan MJ; O'Higgins P
    J Biomech; 2012 May; 45(8):1498-506. PubMed ID: 22381738
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Deformation of the human mandible during simulated tooth clenching.
    Korioth TW; Hannam AG
    J Dent Res; 1994 Jan; 73(1):56-66. PubMed ID: 8294619
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The effect of superstructure design on stress distribution in peri-implant bone during mandibular flexure.
    Nokar S; Baghai Naini R
    Int J Oral Maxillofac Implants; 2010; 25(1):31-7. PubMed ID: 20209184
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.